Abstract:
A stackable semiconductor assembly includes a semiconductor device, a heat spreader, an adhesive, a terminal, a plated through-hole and build-up circuitry. The heat spreader includes a bump, a base and a flange. The bump defines a cavity. The semiconductor device is mounted on the bump at the cavity, electrically connected to the build-up circuitry and thermally connected to the bump. The bump extends from the base into an opening in the adhesive, the base extends vertically from the bump opposite the cavity and the flange extends laterally from the bump at the cavity entrance. The build-up circuitry provides signal routing for the semiconductor device. The plated through-hole provides signal routing between the build-up circuitry and the terminal. The heat spreader provides heat dissipation for the semiconductor device.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and dual adhesives. The heat spreader includes a bump, a base and a ledge. The conductive trace includes a pad and a terminal. The semiconductor device is mounted on the bump in a cavity in the bump, is electrically connected to the conductive trace and is thermally connected to the heat spreader. The bump extends into an opening in the first adhesive and is aligned with and spaced from an opening in the second adhesive. The base and the ledge extend laterally from the bump. The first adhesive is sandwiched between the base and the ledge, the second adhesive is sandwiched between the conductive trace and the ledge and the ledge is sandwiched between the adhesives. The conductive trace is located outside the cavity and provides signal routing between the pad and the terminal.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post through an opening in the adhesive, mounting a substrate on the adhesive including inserting the post into an aperture in the substrate, then flowing the adhesive between the post and the substrate in the aperture, solidifying the adhesive, then grinding the post and the adhesive, then mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the substrate and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A method of making a semiconductor chip assembly includes providing first and second posts, first and second adhesives, first and second conductive layers and a dielectric base, wherein the first post extends from the dielectric base in a first vertical direction into a first opening in the first adhesive and is aligned with a first aperture in the first conductive layer, the second post extends from the dielectric base in a second vertical direction into a second opening in the second adhesive and is aligned with a second aperture in the second conductive layer and the dielectric base is sandwiched between and extends laterally from the posts, then flowing the first adhesive in the first vertical direction and the second adhesive in the second vertical direction, solidifying the adhesives, then providing a conductive trace that includes a pad, a terminal and selected portions of the conductive layers, wherein the pad extends beyond the dielectric base in the first vertical direction and the terminal extends beyond the dielectric base in the second vertical direction, providing a heat spreader that includes the posts and the dielectric base, then mounting a semiconductor device on the first post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a bump and a base. The conductive trace includes a pad and a terminal. The semiconductor device is mounted on the bump opposite a cavity in the bump, is electrically connected to the conductive trace and is thermally connected to the bump. The bump extends from the base into an opening in the adhesive and the base extends laterally from the bump. The conductive trace is located outside the cavity and provides signal routing between the pad and the terminal.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and first and second adhesives. The heat spreader includes a first post, a second post and a base. The conductive trace includes a pad and a terminal. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The first post extends from the base in a first vertical direction into a first opening in the first adhesive and is located within a periphery of the second post, the second post extends from the base in a second vertical direction into a second opening in the second adhesive and the base is sandwiched between and extends laterally from the posts. The conductive trace provides signal routing between the pad and the terminal.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a bump that includes first, second and third bent corners that shape a cavity. The conductive trace includes a pad and a terminal. The semiconductor device is located within the cavity, is electrically connected to the conductive trace and is thermally connected to the bump. The bump extends into an opening in the adhesive and provides a recessed die paddle and a reflector for the semiconductor device. The conductive trace provides signal routing between the pad and the terminal.
Abstract:
A method of making a semiconductor chip assembly includes providing a bump and a ledge, wherein the bump includes first, second and third bent corners that shape a cavity, mounting an adhesive on the ledge including inserting the bump into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the bump with an aperture in the conductive layer, then flowing the adhesive between the bump and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the ledge, providing a heat spreader that includes the bump, then mounting a semiconductor device on the bump within the cavity, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a bump, a base and a flange. The conductive trace includes a pad and a terminal. The semiconductor device extends into a cavity in the bump, is electrically connected to the conductive trace and is thermally connected to the bump. The bump extends from the base into an opening in the adhesive, the base extends vertically from the bump opposite the cavity and the flange extends laterally from the bump at the cavity entrance. The conductive trace is located outside the cavity and provides signal routing between the pad and the terminal.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post, a base and a flange. The conductive trace includes a pad and a terminal. The semiconductor device extends into a cavity in the flange, is electrically connected to the conductive trace and is thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, the flange extends upwardly from the post in the opening and extends laterally above the adhesive, the cavity extends into the opening and the base extends laterally from the post. The conductive trace is located outside the cavity and provides signal routing between the pad and the terminal.