Abstract:
The present invention provides a polymer electrolyte membrane for a fuel cell, including a porous membrane including ceramic fibers crisscrossed in a network and pores formed by the ceramic fibers coalesced at intersection points, and a proton conductive polymer inside the pores.
Abstract:
An electrode for a fuel cell of the present invention includes an electrode substrate, a microporous layer formed on the surface of the electrode substrate, and a nano-carbon layer formed on the surface of the microporous layer with a catalyst layer coated on the surface of the nano-carbon layer. Alternatively, an electrode for a fuel cell includes an electrode substrate in which carbon particles are dispersed, a nano-carbon layer on the electrode substrate, and a catalyst layer on the nano-carbon layer.
Abstract:
A metal separator for a fuel cell of the present invention includes a metal substrate having a reactant flow pathway, and a metal nitride coating layer. The metal nitride coating layer covers the surface of the metal substrate on which a reactant flow pathway is formed and slurry-coated. A metal layer for improving adherence is formed between the surface of the metal substrate on which a reactant flow pathway is formed, and the electro-conductive metal nitride coating layer. The metal separator is suitable for a fuel cell since it is lightweight, and has excellent anti-corrosion and electric conductivity.
Abstract:
A cooling system for a fuel cell stack is provided. The fuel cell stack includes an electricity generating assembly having a plurality of unit cells, wherein each of the unit cells comprises common passages. An oxidant used to generate electric energy and a coolant used to cool the stack may both flow through the common passages.
Abstract:
The present invention is a fuel cell system including a stack having an electricity generator, that includes separators disposed on both surfaces of a membrane-electrode assembly, a reformer that converts fuel to generate hydrogen gas and supplies the hydrogen gas to the stack, a fuel supply unit that supplies the fuel to the reformer, an air supply unit that supplies air to the stack, a cooling water supply unit that supplies cooling water to the stack, and a flow channel section that is formed in the separator and through that the cooling water supplied from the cooling water supply unit passes.
Abstract:
A method for preparing poly(2,5-benzimidazole) whereby 3,4-diaminobenzoic acid is polymerized using a dehydrating reagent containing P2O5 and CX3SO3H where X is H or F. The poly(2,5-benzimidazole) has good proton conductivity and low methanol permeability, and therefore can be used as a polymer electrolyte membrane for a fuel cell.
Abstract translation:一种制备聚(2,5-苯并咪唑)的方法,其中使用含有P 2 O 5和CX 3的脱水剂使3,4-二氨基苯甲酸聚合 其中X是H或F.这种聚(2,5-苯并咪唑)具有良好的质子传导性和低的甲醇渗透性,因此可用作聚合物电解质膜 燃料电池
Abstract:
A positive active material for rechargeable lithium batteries includes an active material component processed from a manganese-based compound. The transition metal compound is selected from LixMnO2, LixMnF2, LixMnS2, LixMnO2-zFz, LixMnO2-xSz, LixMn1-yMyO2, LixMn1-yMyF2, LixMn1-yMyS2, LixMn1-yMyO2-zFz, LixMn1-yMyO2-zSz, LixMn2O4, LixMn2F4, LixMn2S4, LixMn2O4-zFz, LixMn2O4-zSz, LixMn2-yMyO4, LixMn2-yMyF4, LixMn2-yMyS4, LixMn2-yMyO4-zFz, or LixMn2-yMyO4-zSz where O
Abstract:
Carbon-doped lithium manganese oxides in crystalline powder form can be used as electrode material. The carbon-doped lithium manganese oxide is prepared by a process including the steps of: preparing a first solution of a lithium compound and a manganese compound, said first solution having lithium ions and manganese ions at a mole ratio of 1:2; preparing a solution of polyethylene glycol and adding the polyethylene glycol solution to said first solution to form a second solution and then drying the second solution until a gel is obtained while stirring the second solution; and pre-treating said gel and then heating the pre-treated gel.
Abstract:
The catalyst for a fuel cell of the present invention includes a compound including at least one element selected from the group consisting of silicon, aluminum, and titanium, and a catalytic metal.
Abstract:
The present invention includes a catalyst for a fuel cell which contains a transition element core, and a surface layer that contains at least one selected from the group including platinum, a platinum-transition element alloy, and a combination thereof, and that exists on the surface of the core. The catalyst being prepared without a surfactant.