Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.
Abstract:
Dishing is known to be a problem after CMP of dielectric layers in which the distribution of embedded metal is non-uniform. This problem has been solved by populating those areas where the density of embedded metal is low with unconnected regions that, instead of being uniformly filled with metal, are made up of metallic patterns whose combined area within a given region is about half the total area of the region itself. Two examples of such patterns are a line stripe pattern (similar to a parquet flooring tile) and a checker board pattern. Data is presented comparing the parasitic capacitances resulting from the use of patterns of this type relative to conventional solid patterns. The effect of aligning the regions so as to reduce their degree of overlap with wiring channels is also discussed.
Abstract:
An improved dual damascene structure, and process for manufacturing it, are described in which the via hole is first lined with a layer of silicon nitride prior to adding the diffusion barrier and copper. This allows use of a barrier layer that is thinner than normal (since the silicon nitride liner is an effective diffusion barrier) so that more copper may be included in the via hole, resulting in an improved conductance of the via. A key feature of the process that is used to make the structure is the careful control of the etching process. In particular, the relative selectivity of the etch between silicon oxide and silicon nitride must be carefully adjusted.
Abstract:
The present invention discloses a hybrid polysilicon/amorphous silicon TFT device for switching a LCD and a method for fabrication wherein a n.sup.+ doped amorphous silicon layer is advantageously used as a mask during a laser annealing process such that only a selected portion of a hydrogenated amorphous silicon layer is converted to a crystalline structure while other portions retain their amorphous structure. As a result, a polysilicon TFT and at least one amorphous silicon TFT are formed in the same structure and the benefits of both a polysilicon TFT and amorphous silicon TFT such as a high charge current and a low leakage current are retained in the hybrid structure.
Abstract:
A method of fabricating a polycrystalline silicon thin-film transistor having two symmetrical lateral resistors is disclosed. Two sub-gates are formed along with a gate in the gate metal or polysilicon layer of the thin-film transistor. The two sub-gates that are located symmetrically on the two sides of the gate have equal distances to the gate. One sub-gate is near the drain of the thin film transistor and the other near the source. Two sections in the polycrystalline silicon layer of the thin film transistor are blocked by the two sub-gates and no impurity material is doped. The two undoped sections form the symmetrical lateral resistors of this invention. The lateral resistor near the drain decreases the electric field in the nearby depletion area when the thin-film transistor is switched off. The current leakage is reduced.
Abstract:
A semiconductor structure prevents energy that is used to blow a fuse from causing damage. The semiconductor structure includes a device, guard ring, and at least one protection layer. The device is constructed on the semiconductor substrate underneath the fuse. The seal ring, which surrounds the fuse, is constructed on at least one metal layer between the device and the fuse for confining the energy therein. The protection layer is formed within the seal ring, on at least one metal layer between the device and the fuse for shielding the device from being directly exposed to the energy.
Abstract:
The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.
Abstract:
A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a first MOS device of a first conductivity type and a second MOS device of a second conductivity type opposite the first conductivity type. The first MOS device includes a first gate dielectric on a semiconductor substrate; a first metal-containing gate electrode layer over the first gate dielectric; and a silicide layer over the first metal-containing gate electrode layer. The second MOS device includes a second gate dielectric on the semiconductor substrate; a second metal-containing gate electrode layer over the second gate dielectric; and a contact etch stop layer having a portion over the second metal-containing gate electrode layer, wherein a region between the portion of the contact etch stop layer and the second metal-containing gate electrode layer is substantially free from silicon.
Abstract:
A metal gate/high-k dielectric semiconductor device provides an NMOS gate structure and a PMOS gate structure formed on a semiconductor substrate. The NMOS gate structure includes a high-k gate dielectric treated with a dopant impurity such as La and the high-k gate dielectric material of the PMOS gate structure is deficient of this dopant impurity and further includes a work function tuning layer over the high-k gate dielectric.