Abstract:
The present invention relates to a process for the production of 1,3-butadiene which comprises the following phases: a) extracting, by means of extractive distillation, in an extraction section, an end-product containing 1,3-butadiene and a raffinate product, starting from mixtures of saturated and unsaturated compounds having from 2 to 10 carbon atoms in the chain; b) sending the raffinate product to a dehydrogenation section; c) dehydrogenating the raffinate product in the dehydrogenation section in the presence of a dehydrogenation catalyst and an inert product so as to form a reaction effluent containing 1,3-butadiene; d) recirculating the reaction effluent containing 1,3-butadiene directly to the extraction section after separating the incondensable compounds.
Abstract:
A bis-imine pyridine complex of lanthanides having general formula (I): Said bis-imine pyridine complex of lanthanides having general formula (I) can be advantageously used in a catalytic system for the (co)polymerization of conjugated dienes.
Abstract:
Continuous mass polymerisation process for the preparation of vinyl aromatic polymers includes:
continuously feeding at least one vinyl aromatic monomer and at least one radical initiator to a mixing device, obtaining a reaction mixture; feeding the reaction mixture to a Continuous Stirred Tank Reactor (CSTR) and in liquid phase leaving the CSTR to at least one Plug Flow Reactor (PFR); recycling, to the mixing device, a fraction of the reaction mixture in liquid phase leaving the at least one PFR, the fraction between 25% and 50% by mass with respect to total mass of reaction mixture in liquid phase leaving the at least one PFR; feeding the remaining fraction of the reaction mixture in liquid phase leaving the at least one PFR, to a devolatilisation system; and feeding the polymer leaving the devolatilisation system or additive system, to a granulation system and recovering the polymer.
Abstract:
A method for the preparation of amidines or their derivatives, includes the following step
synthesis of nitrile lactams by reaction between a lactam and an α-β unsaturated nitrile; synthesis of N-(aminoalkyl) lactams by reducing the nitrile lactams; and synthesis of amidines by dehydrating the N-(aminoalkyl) lactams.
Abstract:
A process for producing a diene, preferably a conjugated diene, more preferably 1,3-butadiene, includes the steps of dehydrating at least one alkenol in the presence of at least one catalytic material having at least one acid catalyst based on silica (SiO2) and alumina (Al2O3), preferably a silica-alumina (SiO2—Al2O3), the catalyst having an alumina content (Al2O3) lower than or equal to 12% by weight, preferably between 0.1% by weight and 10% by weight, with respect to the catalyst total weight. The alumina content is referred to the catalyst total weight without binder, and a pore modal diameter between 9 nm and 170 nm, preferably between 10 nm and 150 nm, still more preferably between 12 nm and 120 nm. Preferably, the alkenol is obtainable directly from biosynthetic processes, or catalytic dehydration processes of at least one diol, preferably a butanediol, more preferably 1,3-butanediol, still more preferably bio-1,3-butanediol, deriving from biosynthetic processes.
Abstract:
A process for producing a diene, preferably a conjugated diene, more preferably 1,3-butadiene, includes the steps of dehydrating at least one alkenol in the presence of at least one catalytic material having at least one acid catalyst based on silica (SiO2) and alumina (Al2O3), preferably a silica-alumina (SiO2—Al2O3), the catalyst having an alumina content (Al2O3) lower than or equal to 12% by weight, preferably between 0.1% by weight and 10% by weight, with respect to the catalyst total weight. The alumina content is referred to the catalyst total weight without binder, and a pore modal diameter between 9 nm and 170 nm, preferably between 10 nm and 150 nm, still more preferably between 12 nm and 120 nm. Preferably, the alkenol is obtainable directly from biosynthetic processes, or catalytic dehydration processes of at least one diol, preferably a butanediol, more preferably 1,3-butanediol, still more preferably bio-1,3-butanediol, deriving from biosynthetic processes.
Abstract:
Oxo-nitrogenated iron complex having general formula (I): in which: R1 and R2, identical or different, represent a hydrogen atom; or they are selected from linear or branched, optionally halogenated C1-C20, preferably C1-C15, alkyl groups, optionally substituted cycloalkyl groups, optionally substituted aryl groups; R3 represents a hydrogen atom, or it is selected from linear or branched, optionally halogenated C1-C20, preferably C1-C15 alkyl groups, optionally substituted cycloalkyl groups, optionally substituted aryl groups; X, identical or different, represent a halogen atom such as, for example, chlorine, bromine, iodine, preferably chlorine; or they are selected from. linear or branched C1-C20, preferably C1-C15, alkyl groups, —OCOR4 groups or —OR4 groups in which R4 is selected from linear or branched C1-C20, preferably C1-C15, alkyl groups; n is 2 or 3. Said oxo-nitrogenated iron complex having general formula (I) can be advantageously used in a catalytic system for the (co)polymerization of conjugated dienes.
Abstract:
The present invention relates to a process for producing a diene, preferably a conjugated diene, more preferably 1,3-butadiene, comprising the dehydration of at least one alkenol having a number of carbon atoms greater than or equal to 4, in the presence of a catalytic material comprising at least one crystalline metalosilicate in acid form, preferably a macroporous zeolite, more preferably a zeolite with a FAU, BEA or MTW structure. Preferably, said alkenol having a number of carbon atoms greater than or equal to 4 may be obbtained directly through biosynthetic processes, or through catalytic dehydration processes of at least one diol. When said alkenol is a butenol, said diol is preferably a butanediol, more preferably 1,3-butanediol, even more preferably bio-1,3-butanediol, i.e. 1,3-butanediol deriving from biosynthetic processes. When said alkenol is 1,3-butanediol, or bio-1,3-butanediol, the diene obtained with the process according to the present invention is, respectively, 1,3-butadiene, or bio-1,3-butadiene.
Abstract:
The present invention relates to an expandable polymeric composition comprising: a) a polymeric matrix containing vinyl aromatic polymers and/or copolymers; b) from 0.1% to 20% by weight, calculated on the polymeric matrix (a), of an athermanous agent; c) from 0.01% to 10% by weight, calculated on the polymeric matrix (a), of at least one non-polymeric brominated flame retardant additive; d) from 0.01% to 10% by weight, calculated on the polymeric matrix (a), of at least one brominated polymer containing at least 50% bromine; e) from 0.01% to 5% by weight, calculated on the polymeric matrix (a), of a synergistic flame retardant additive; f) from 1% by weight to 10% by weight of at least one blowing agent.
Abstract:
It is disclosed a process for propagating a yeast capable to ferment glucose and xylose of a lignocellulosic feedstock hydrolyzate, said process comprising propagating the yeast over at least two propagation cycles. The first propagation cycle comprises the steps of: contacting the yeast at a starting yeast density with a first cultivation medium comprising a first portion of the lignocellulosic feedstock hydrolyzate; and allowing the yeast to propagate to create a first populated broth comprising water and a first propagated yeast, wherein at least 50% of the glucose and less than 20% of the xylose in the first cultivation medium are consumed in the first propagation cycle. The second cycle comprises the steps of: separating the first populated broth in at least a first removed portion and a first residual portion, wherein both the first residual portion and the first removed portion comprise some of the first propagated yeast; contacting the first residual portion with a second cultivation medium comprising a second portion of the lignocellulosic feedstock hydrolyzate; and allowing the yeast to propagate to create a second populated broth comprising water and a second propagated yeast, wherein at least 50% of the glucose and less than 20% of the xylose in the second cultivation medium are consumed in the second propagation cycle.