Abstract:
A backlight module includes a back cover, a light source located on the back cover, an optical fiber located on the back cover and over the light source and having a light-incident hole facing the light source and a plurality of light-emergent windows opposite to the light-incident hole. A plurality of light shutters correspondingly covers the light-emergent windows. A controlling device is provided for controlling the open and close of the light shutters. Light emitted from the light source and entering the optical fiber is permitted to leave the optical fiber from the light-emergent windows whose light shutters are opened. The light is not permitted to leave the optical fiber from the light-emergent windows whose light shutters are closed.
Abstract:
A light source device for a display includes light emitting diode packages. Each light emitting diode package includes a substrate, a first light emitting diode chip emitting a first beam of light, a second light emitting diode chip emitting a second beam of light, and a package layer including a wavelength converting material. Frequency bands of the first and second light beams both have a full width at half maximum of 30 nm to 40 nm. The wavelength converting material is excited by the first and second beams to generate a third beam of light, the frequency band of the third beam of light having a full width at half maximum of 10 nm to 50 nm. A display using the light source device is also disclosed.
Abstract:
The present disclosure provides an LED package which includes electrodes, an LED die electrically connected with the electrodes, an encapsulation covering the LED die; and a casing surrounding the encapsulation and the LED die. The casing includes a base, a reflecting cup and a supporting portion. The reflecting cup extends from the base upwards, the reflecting cup surrounds the LED die, and the supporting portion is located inside the reflecting cup and across the electrodes.
Abstract:
A photoelectric device includes an electrode structure, an LED (light emitting diode) element, a zener diode and a reflective cup. The LED element, the zener diode and the reflective cup are arranged on the electrode structure. The LED element and the zener diode are electrically connected in anti-parallel with each other. The reflective cup comprises an inner surface defined thereof and a nick defined in an outside of the reflective cup. The LED element is surrounded by the inner surface of the reflective cup and the zener diode is arranged in the nick.
Abstract:
A light emitting diode (LED) package includes a substrate, a first electrode and a second electrode mounted on opposite sides of the substrate, an LED chip mounted on a top surface of one of the electrodes and electrically connecting the first electrode and the second electrode by wire bonding, and a reflecting cup enclosing an outer periphery of the first electrode and the second electrode to expose top surfaces of the first electrode and the second electrode and bottom surfaces of the first electrode and the second electrode.
Abstract:
An exemplary light emitting diode (LED) package includes a substrate, a first electrode and a second electrode embedded in the substrate and spaced from each other, and an LED die mounted on a top surface of the substrate. The substrate also includes a bottom surface. Top ends of the first and second electrodes are exposed at the top surface of the substrate, and bottom ends of the first and second electrodes are exposed at the bottom surface of the substrate. An oxidation-resistant metal coating layer is formed on a top face of each of the first and second electrodes. The LED die is electrically connected to the first and second electrodes via the two oxidation-resistant metal coating layers.
Abstract:
An LED package includes a first electrode and a second electrode electrically insulating from the first electrode, an LED chip, two electrically insulating connecting layers, and a reflector. Top surfaces of the first electrode and the second electrode are recessed to define a first receiving space and a second receiving space therein. The LED chip is mounted on the top surface of the first electrode and electrically connects the first electrode and the second electrode. The electrically insulating connecting layers are respectively received in the first receiving space and the second receiving space. The reflector is mounted on top surfaces of the connecting layers and enclosing the LED chip therein.
Abstract:
A side view light emitting diode (LED) package includes an electrode structure, an LED die disposed on the electrode structure and an encapsulation layer covering the LED die. The encapsulation layer includes a light outputting surface. The electrode structure includes a first electrode and a second electrode spaced from each other to define a tortuous gap therebetween. Resin material for forming a substrate of the LED package fills in the gap to interconnect the first and second electrode together. The LED die is electrically connected to the first electrode and the second electrode. The present disclosure also provides a method for manufacturing the side view LED package.
Abstract:
A method of manufacturing an LED package including steps: providing an electrode, the electrode including a first electrode, a second electrode, a channel defined between the first electrode and the second electrode, the first electrode and the second electrode arranged with intervals mutually, a cavity arranged on the first electrode, and the cavity communicating with the channel; arranging an LED chip electrically connecting with the first electrode and the second electrode and arranged inside the cavity; providing a shield covering the first electrode and the second electrode; injecting a transparent insulating material to the cavity via the channel, and the first electrode, the second electrode, and the shield being interconnected by the transparent insulating material; solidifying the transparent insulating material to obtain the LED package.
Abstract:
A method for manufacturing an LED package includes following steps. A plate is provided. The plate defines a plurality of the through holes extending from an upper surface to a bottom surface of the plate. A blue film is attached to the bottom surface of the plate and covers openings of the through holes. The blue film and an inner wall of the plate defining the through hole cooperatively define a groove. Glue doped with phosphor particle is injected into the groove. The phosphor particles are condensed to a bottom surface of the glue adjacent to the blue film. The LED chips are embedded in the grooves and positioned at upper ends of the grooves. Finally, the blue film is removed and the plate is severed to obtain a plurality of individual LED packages each including a corresponding LED chip.