Abstract:
An LED package includes a first electrode, a second electrode adjacent to the first electrode, a molded body surrounding and encapsulating the first and second electrodes, and an LED die mounted on the second electrode. The molded body includes a reflecting cup located over the first and second electrodes and the reflecting cup defines a receiving cavity in a top face to receive the LED die. A first extension electrode protrudes sideward from the first electrode and a second extension electrode protrudes sideward from the second electrode. The first and second extension electrodes are exposed from an outer periphery of the molded body. A method for manufacturing the LED package is also provided.
Abstract:
An LED package includes adjacent first and second electrodes, first and second extension electrodes protruding sideward from the first and second electrodes, a molded body surrounding the first and second electrodes and an LED die. The molded body forms a reflecting cup located over the first and second electrodes, with each reflecting cup defining a receiving cavity in a top face thereof to receive the LED die. The first and second extension electrodes are exposed from an outer periphery of the molded body. The first electrode has a first bottom face. The second electrode has a second bottom face. The first and second bottom faces of the first and second electrodes are exposed out from a bottom face of the molded body. A method for manufacturing the LED package is also provided.
Abstract:
A liquid crystal display device comprises a backlight module and a liquid crystal display module in a light emitting path of the backlight module. The liquid crystal display module includes a first conductive substrate facing the backlight module, a second conductive substrate spaced apart from the first conductive substrate, and a liquid crystal layer sandwiched between the first conductive substrate and the second conductive substrate. The second conductive substrate includes a transparent substrate, a color filter layer formed on the transparent substrate, and a light converting layer formed on the color filter layer, and a transparent conductive layer formed on the light converting layer.
Abstract:
A liquid crystal display module comprises a thin film transistor array substrate, a liquid crystal layer, a color filter substrate and a plurality of light emitting diode chips. The thin film transistor array substrate has a first surface and a second surface. A circuit structure is formed on the first surface. A plurality of thin film transistors is formed on the second surface and electrically connecting to the circuit structure. The liquid crystal layer faces the second surface. The liquid crystal layer is formed between the thin film transistor array substrate and the color filter substrate. The light emitting diode chips are adhered on the first surface and electrically connecting to the circuit structure. Each light emitting diode chip has a light emitting surface. Light emitted from the light emitting surfaces is incident on the first surface of the thin film transistor array substrate.
Abstract:
An optical lens includes a first optical surface located at a bottom thereof, a third optical surface located at a top thereof and arranged oppositely to the first optical surface, and a second optical surface extending between the first optical surface and the third optical surface. The third optical surface is recessed downwardly towards the first optical surface. The light from the LED light source enters into the optical lens through the first optical surface, most of the entering light is directly refracted out of the optical lens through the second optical surface, and a part of the entering light that strikes the third optical surface is first reflected by the third optical surface towards the second optical surface via total internal reflection and then refracted out of the optical lens through the second optical surface. A backlight module incorporating the optical lens is also provided.
Abstract:
An LED module includes a PCB with a first electrode and a second electrode formed thereon, an LED mounted on the PCB, a lens mounted on the PCB and covering the LED. The LED includes a base, an LED die mounted on the base, and a packaging layer arranged on the base and covering the LED die therein. The base is flat. The lens includes a bottom surface, a first light output surface extending from the bottom surface, a second light output surface extending upwardly from a central of the first light output surface and away from the bottom surface, and a reflecting surface recessing downwardly from a top end of the second light output surface and oriented towards the bottom surface. A chamber is defined in the bottom surface to receive the LED therein.
Abstract:
A light emitting diode package for mounting to a printed circuit board by surface mounting technology includes a substrate, first and second electrodes and a light emitting diode. The first electrode and the second electrode each have a first end and a second end. The second end of the first electrode is adjacent to the first end of the second electrode and a distance therebetween is increased along a top-to-bottom direction of the light emitting diode package. The first end of the first electrode extends out of the substrate and forms a tapered structure. The second end of the second electrode extends out of the substrate and forms a tapered structure. The light emitting diode chip is electrically connected with the first and second electrodes. A method for manufacturing the light emitting diode package is also provided.
Abstract:
A light emitting diode (LED) package includes a substrate, a first electrode, a second electrode, an LED die mounted on the substrate and electrically connected to the first and the second electrodes, and an encapsulation layer encapsulating the LED die. Both the first and the second electrodes are embedded in the substrate and spaced from each other. Each of the first and the second electrodes includes a top face and a bottom face, with the top face and the bottom face thereof being exposed at a top surface and a bottom surface of the substrate, respectively. The top face of the first electrode defines a first groove therein. An oxidation-resistant metal coating layer is filled in the first groove. A positive bonding pad of the LED die directly contacts with a top face of the first oxidation-resistant metal coating layer.
Abstract:
A light emitting diode (LED) package includes a substrate, a first electrode and a second electrode embedded in the substrate and spaced from each other, an LED die mounted on a top surface of the substrate and electrically connected to the first and the second electrodes. Both the first and the second electrodes include a top face and a bottom face, with the top face and the bottom face of each of the first and the second electrodes being exposed at the top surface and a bottom surface of the substrate, respectively. The top face of the first electrode defines a first groove corresponding to a positive bonding pad (p-pad) of the LED die. The p-pad is partially inserted into the first groove. An oxidation-resistant metal coating layer is filled between an insertion portion of the p-pad and an inner surface of the first groove.
Abstract:
An LED package includes a first electrode, a second electrode, a reflecting cup connecting the first electrode and the second electrode, and an LED chip. The first electrode includes a first main portion and a first connecting portion extending outwardly from the first main portion. The first connecting portion has a first connecting face away from the first main portion. The second electrode includes a second main portion and a second connecting portion extending outwardly from the second main portion. The second connecting portion has a second connecting face away from the second main portion. The first main portion and the second main portion are embedded into the receiving cup, and the first connecting face of the first connecting portion and the second connecting face of the second connecting portion are exposed outside the receiving cup.