MAGNETORESISTIVE DEVICES AND METHODS FOR MANUFACTURING MAGNETORESISTIVE DEVICES
    34.
    发明申请
    MAGNETORESISTIVE DEVICES AND METHODS FOR MANUFACTURING MAGNETORESISTIVE DEVICES 有权
    磁电装置及制造磁性装置的方法

    公开(公告)号:US20160343392A1

    公开(公告)日:2016-11-24

    申请号:US14717213

    申请日:2015-05-20

    CPC classification number: G11B5/3903 G01R33/09 G11B5/3909 G11B2005/3996

    Abstract: A magnetoresistive device that can include a magnetoresistive stack and an etch-stop layer (ESL) disposed on the magnetoresistive stack. A method of manufacturing the magnetoresistive device can include: depositing the magnetoresistive stack, the ESL and a mask layer on a substrate; performing a first etching process to etch a portion of the mask layer to expose a portion of the ESL; and performing a second etching process to etch the exposed portion of the ESL and a portion of the magnetoresistive stack. The method can further include depositing a photoresist layer on the hard mask before the first etching process and removing the photoresist layer from the hard mask following the first etching process. The first and second etching processes can be different. For example, the first etching process can be a reactive etching process and the second etching process can be a non-reactive etching process.

    Abstract translation: 可以包括磁阻堆叠和设置在磁阻堆叠上的蚀刻停止层(ESL)的磁阻器件。 制造磁阻器件的方法可以包括:在衬底上沉积磁阻堆叠,ESL和掩模层; 执行第一蚀刻工艺以蚀刻掩模层的一部分以暴露ESL的一部分; 以及执行第二蚀刻工艺以蚀刻ESL的暴露部分和磁阻堆叠的一部分。 该方法还可以包括在第一蚀刻工艺之前在硬掩模上沉积光致抗蚀剂层,并且在第一蚀刻工艺之后从硬掩模中除去光致抗蚀剂层。 第一和第二蚀刻工艺可以不同。 例如,第一蚀刻工艺可以是反应性蚀刻工艺,第二蚀刻工艺可以是非反应性蚀刻工艺。

    METHOD FOR PROCESSING A CARRIER
    35.
    发明申请
    METHOD FOR PROCESSING A CARRIER 有权
    处理载体的方法

    公开(公告)号:US20160104640A1

    公开(公告)日:2016-04-14

    申请号:US14511199

    申请日:2014-10-10

    Abstract: According to various embodiments, a method for processing a carrier may include: co-depositing at least one metal from a first source and carbon from a second source over a surface of the carrier to form a first layer; forming a second layer over the first layer, the second layer including a diffusion barrier material, wherein the solubility of carbon in the diffusion barrier material is less than in the at least one metal; and forming a graphene layer at the surface of the carrier from the first layer by a temperature treatment.

    Abstract translation: 根据各种实施例,用于处理载体的方法可以包括:在载体的表面上共同沉积来自第一源的至少一种金属和来自第二源的碳以形成第一层; 在第一层上形成第二层,第二层包括扩散阻挡材料,其中碳在扩散阻挡材料中的溶解度小于在至少一种金属中的溶解度; 以及通过温度处理从所述第一层在所述载体的表面上形成石墨烯层。

    Cavity structures for MEMS devices
    36.
    发明授权
    Cavity structures for MEMS devices 有权
    MEMS器件的腔结构

    公开(公告)号:US09145292B2

    公开(公告)日:2015-09-29

    申请号:US14281251

    申请日:2014-05-19

    Abstract: Embodiments relate to MEMS devices, particularly MEMS devices integrated with related electrical devices on a single wafer. Embodiments utilize a modular process flow concept as part of a MEMS-first approach, enabling use of a novel cavity sealing process. The impact and potential detrimental effects on the electrical devices by the MEMS processing are thereby reduced or eliminated. At the same time, a highly flexible solution is provided that enables implementation of a variety of measurement principles, including capacitive and piezoresistive. A variety of sensor applications can therefore be addressed with improved performance and quality while remaining cost-effective.

    Abstract translation: 实施例涉及MEMS器件,特别是与单个晶片上的相关电气器件集成的MEMS器件。 实施例利用模块化工艺流程概念作为MEMS首要方法的一部分,使得能够使用新颖的腔体密封过程。 因此,通过MEMS处理对电气装置的影响和潜在的有害影响被减少或消除。 同时,提供了一种高度灵活的解决方案,可以实现各种测量原理,包括电容式和压阻式。 因此,可以在提高性能和质量的同时解决各种传感器应用,同时保持成本效益。

    XMR angle sensors
    40.
    发明授权

    公开(公告)号:US10712176B2

    公开(公告)日:2020-07-14

    申请号:US15652646

    申请日:2017-07-18

    Abstract: Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized.

Patent Agency Ranking