Abstract:
Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
Abstract:
In the method of manufacturing a magnetoresistive sensor module, at first a composite arrangement out of a semiconductor substrate and a metal-insulator arrangement is provided, wherein a semiconductor circuit arrangement is integrated adjacent to a main surface of the semiconductor substrate into the same, wherein the metal-insulator arrangement is arranged on the main surface of the semiconductor substrate and comprises a structured metal sheet and insulation material at least partially surrounding the structured metal sheet, wherein the structured metal sheet is electrically connected to the semiconductor circuit arrangement. Then, a magnetoresistive sensor structure is applied onto a surface of the insulation material of the composite arrangement, and finally an electrical connection between the magnetoresistive sensor structure and the structured metal sheet is established, so that the magnetoresistive sensor structure is connected to the integrated circuit arrangement.
Abstract:
Embodiments relate to MEMS devices and methods for manufacturing MEMS devices. In one embodiment, the manufacturing includes forming a monocrystalline sacrificial layer on a non-silicon-on-insulator (non-SOI) substrate, patterning the monocrystalline sacrificial layer such that the monocrystalline sacrificial layer remains in a first portion and is removed in a second portion lateral to the first portion; depositing a first silicon layer, the first silicon layer deposited on the remaining monocrystalline sacrificial layer and further lateral to the first portion; removing at least a portion of the monocrystalline sacrificial layer via at least one release aperture in the first silicon layer to form a cavity and sealing the cavity.
Abstract:
A magnetoresistive device that can include a magnetoresistive stack and an etch-stop layer (ESL) disposed on the magnetoresistive stack. A method of manufacturing the magnetoresistive device can include: depositing the magnetoresistive stack, the ESL and a mask layer on a substrate; performing a first etching process to etch a portion of the mask layer to expose a portion of the ESL; and performing a second etching process to etch the exposed portion of the ESL and a portion of the magnetoresistive stack. The method can further include depositing a photoresist layer on the hard mask before the first etching process and removing the photoresist layer from the hard mask following the first etching process. The first and second etching processes can be different. For example, the first etching process can be a reactive etching process and the second etching process can be a non-reactive etching process.
Abstract:
According to various embodiments, a method for processing a carrier may include: co-depositing at least one metal from a first source and carbon from a second source over a surface of the carrier to form a first layer; forming a second layer over the first layer, the second layer including a diffusion barrier material, wherein the solubility of carbon in the diffusion barrier material is less than in the at least one metal; and forming a graphene layer at the surface of the carrier from the first layer by a temperature treatment.
Abstract:
Embodiments relate to MEMS devices, particularly MEMS devices integrated with related electrical devices on a single wafer. Embodiments utilize a modular process flow concept as part of a MEMS-first approach, enabling use of a novel cavity sealing process. The impact and potential detrimental effects on the electrical devices by the MEMS processing are thereby reduced or eliminated. At the same time, a highly flexible solution is provided that enables implementation of a variety of measurement principles, including capacitive and piezoresistive. A variety of sensor applications can therefore be addressed with improved performance and quality while remaining cost-effective.
Abstract:
In various embodiments, a method for processing a carrier is provided. The method for processing a carrier may include: forming a first catalytic metal layer over a carrier; forming a source layer over the first catalytic metal layer; forming a second catalytic metal layer over the source layer, wherein the thickness of the second catalytic metal layer is larger than the thickness of the first catalytic metal layer; and subsequently performing an anneal to enable diffusion of the material of the source layer forming an interface layer adjacent to the surface of the carrier from the diffused material of the source layer.
Abstract:
Exemplary embodiments are directed to magnetoresistive sensors and corresponding fabrication methods for magnetoresistive sensors. One example of a magnetoresistive sensor includes a layer stack, wherein the layer stack includes a reference layer having a fixed reference magnetization, wherein the fixed reference magnetization has a first magnetic orientation. The layer stack furthermore includes a magnetically free system of a plurality of layers, wherein the magnetically free system has a magnetically free magnetization, wherein the magnetically free magnetization is variable in the presence of an external magnetic field, and wherein the magnetically free magnetization has a second magnetic orientation in a ground state. The magnetically free system has two ferromagnetic layers and an interlayer, wherein the interlayer is arranged between the two ferromagnetic layers and includes magnesium oxide. The layer stack furthermore includes a barrier layer, which is arranged between the reference layer and the magnetically free system and includes magnesium oxide.
Abstract:
Embodiments relate to xMR sensors, in particular AMR and/or TMR angle sensors with an angle range of 360 degrees. In embodiments, AMR angle sensors with a range of 360 degrees combine conventional, highly accurate AMR angle structures with structures in which an AMR layer is continuously magnetically biased by an exchange bias coupling effect. The equivalent bias field is lower than the external rotating magnetic field and is applied continuously to separate sensor structures. Thus, in contrast with conventional solutions, no temporary, auxiliary magnetic field need be generated, and embodiments are suitable for magnetic fields up to about 100 mT or more. Additional embodiments relate to combined TMR and AMR structures. In such embodiments, a TMR stack with a free layer functioning as an AMR structure is used. With a single such stack, contacted in different modes, a high-precision angle sensor with 360 degrees of uniqueness can be realized.