Abstract:
A display panel includes an active device array substrate, an opposite substrate, and a liquid crystal layer. The active device array substrate includes a substrate and further includes a pixel array, signal lines, and first and second repairing lines all disposed on the substrate. The signal lines electrically connect the pixel array. The first repairing line includes first and second line segments respectively located on first and second sides of the pixel array. The first side is substantially perpendicular to the second side. The first and second line segments are electrically connected. The second repairing line includes third and fourth line segments respectively located on third and second sides of the pixel array. The third side is substantially parallel to the first side. The fourth and third line segments are electrically connected. The opposite substrate above the active device array substrate does not cover the first and third line segments.
Abstract:
Semiconductor device components and methods are disclosed. In one embodiment, a semiconductor device component includes a conductive segment having a first surface, a second surface opposite the first surface, a first end, and a second end opposite the first end. A first via is coupled to the second surface of the conductive segment at the first end. A second via is coupled to the first surface of the conductive segment at the second end, and a third via is coupled to the second surface of the conductive segment at the second end.
Abstract:
A method for forming a semiconductor structure is provided to prevent energy that is used to blow at least one fuse formed on a metal layer above a semiconductor substrate from causing damage on the structure. The semiconductor structure includes a device, guard ring, protection ring, and at least one protection layer. The device is constructed on the semiconductor substrate underneath the fuse. A seal ring, which surrounds the fuse, is constructed on at least one metal layer between the device and the fuse for confining the energy therein. The protection layer is formed within the seal ring, on at least one metal layer between the device and the fuse for shielding the device from being directly exposed to the energy.
Abstract:
A method for forming a semiconductor structure is provided to prevent energy that is used to blow at least one fuse formed on a metal layer above a semiconductor substrate from causing damage on the structure. The semiconductor structure includes a device, guard ring, protection ring, and at least one protection layer. The device is constructed on the semiconductor substrate underneath the fuse. A seal ring, which surrounds the fuse, is constructed on at least one metal layer between the device and the fuse for confining the energy therein. The protection layer is formed within the seal ring, on at least one metal layer between the device and the fuse for shielding the device from being directly exposed to the energy.
Abstract:
A display panel including a first substrate, a second substrate, and a liquid crystal layer. The first substrate comprises a display region and a peripheral circuit region adjacent to the display region, and the first substrate includes a pixel array, a plurality of test shorting bars, and a plurality of wires. The pixel array is disposed in the display region. The test shorting bars are disposed in the peripheral circuit region. The wires are disposed in the peripheral circuit region and electrically connected with the pixel array. Moreover, at least one wire and one of the test shorting bars respectively share a part for connecting with each other and forming a common trace. Additionally, the second substrate is disposed opposite to the first substrate. The liquid crystal layer is disposed between the first substrate and the second substrate.
Abstract:
An interconnect structure of an integrated circuit having improved reliability and a method for forming the same are provided. The method includes providing a substrate, forming a dielectric layer overlying the substrate, performing a first shrinking process, wherein the dielectric layer shrinks and has a first shrinkage rate, forming a conductive feature in the dielectric layer after the step of performing the first shrinking process, and performing a second shrinking process after the step of forming the conductive feature, wherein the dielectric layer substantially shrinks and has a second shrinkage rate.
Abstract:
An array substrate having a display region and a peripheral circuit region adjacent to the display region is provided. The array substrate includes a pixel array, a plurality of test shorting bars and a plurality of wires. The pixel array is disposed in the display region. The test shorting bars are disposed in the peripheral circuit region. The wires electrically connected with the pixel array are disposed in the peripheral circuit region. Specially, at least one wire and the test shorting bar share a part for connecting each other and the part forms a common trace.
Abstract:
A method for measuring a property of interconnections is provided. The method includes the following steps. A plurality of interconnection test patterns are provided. A pad to which the plurality of interconnection test patterns are parallelly connected is formed. At least one resistor is formed between at least one of the plurality of interconnection test patterns and the pad. The property of the plurality of interconnection test patterns is measured by applying a current, a voltage and/or a mechanical stress to the pad.
Abstract:
A method is disclosed for determining a size of an interconnect between a first and a second conductor respectively in two layers of an integrated circuit while scaling from a reference processing technology to a predetermined processing technology. The method comprises selecting a set of design rules for the conductors based on the predetermined processing technology, determining a length of a first side of a rectangular cross sectional area of the interconnect based on the design rules and a scaling rule for scaling such a length from the reference processing technology to the predetermined processing technology, and determining a length of a second side of the cross sectional area of the interconnect for compensating an increase of a resistance of the interconnect due to the scaling from the reference processing technology to the predetermined processing technology.
Abstract:
Methods for forming openings in damascene structures, such as dual damascene structures are provided, using plug materials having varied etching rates. In one embodiment, a semiconductor substrate is provided with a low-k material layer formed thereabove, the low-k material layer having an upper surface and at least one via opening formed therethrough. A first plug material layer is formed over the low-k material layer and filled in the via opening, the first plug material layer having a first etching rate. The first plug material layer is etched back to form a first plug partially filling the via opening. A second plug material layer is formed over the low-k material layer and the first plug. The second plug material layer is etched back to form a second plug partially below the upper surface of the low-k material layer, the second plug material layer having a second etching rate higher than the first etching rate.