Abstract:
An electronic component package and a manufacturing method thereof are disclosed. A method of manufacturing an electronic component package, which includes: forming a protrusion part on a first carrier board; stacking an insulation layer on the first carrier board and forming a circuit pattern, which includes a bonding pad and a solder ball pad, on the surface of the insulation layer; mounting an electronic component on the surface of the insulation layer and electrically connecting the electronic component and the bonding pad; and removing the first carrier board and the protrusion part, allows the mounting of the electronic component with just a single circuit pattern layer.
Abstract:
A buried pattern substrate includes an insulation layer; a circuit pattern buried in the insulation layer such that a part thereof is exposed at a surface of the insulation layer; and a stud bump buried in the insulation layer such that one end portion is exposed at one surface of the insulation layer, and such that the other end portion is exposed at the other surface of the insulation layer.
Abstract:
A method of manufacturing a board on chip package including laminating a dry film on a carrier film, one side of which is laminated by a thin metal film; patterning the dry film in accordance with a circuit wire through light exposure and developing process, and forming a solder ball pad and a circuit wire; removing the dry film; laminating an upper photo solder resist excluding a portion where the solder ball pad is formed; etching the thin metal film formed on a portion where the upper photo solder resist is not laminated; mounting a semiconductor chip on the solder ball pad by a flip chip bonding; molding the semiconductor chip with a passivation material; removing the carrier film and the thin metal film; and laminating a lower photo solder resist under the solder ball pad. The board on chip package provides a high density circuit since a circuit pattern is formed using a seed layer.
Abstract:
A conductive paste, a printed circuit board using the conductive paste, and a method of manufacturing the printed circuit board are disclosed. A conductive paste that includes conductive particles, a polymer, and a polymer foam, can reduce the number of printing repetitions, to simplify the manufacturing process, decrease process times, and improve reliability.
Abstract:
A method of manufacturing a printed circuit board is disclosed, in which a cavity is formed for embedding a component, which includes: providing a core board, in which an inner circuit is buried; forming a first via in the core board for interlayer conduction; selectively forming a first photoresist in a position on the core board in correspondence with a position of the cavity; stacking a first build-up layer, on which a first outer circuit is formed, on the core board; and selectively removing the first build-up layer in correspondence with the position of the cavity and removing the first photoresist. Utilizing the method, a board can be manufactured with greater precision, as the thickness tolerance of the cavity may be obtained by controlling the thickness of the photoresist, and the overall thickness of the board can be controlled by controlling the height of the cavity.
Abstract:
A method for manufacturing a substrate having a cavity is disclosed. The method comprises: (a) forming a first circuit patter on both sides of a seed layer by use of a first dry film, the seed layer being for forming a circuit pattern on both sides; (b) laminating a second dry film on the first dry film on both sides of the seed layer, the thickness of the second dry film corresponding to the depth of the cavity to be formed; (c) laminating a dielectric layer on an area outside of where the cavity is to be formed on both sides of the seed layer, the thickness of the dielectric layer corresponding to the depth of the cavity to be formed; (d) laminating on the seed layer a copper foil laminated master having a second circuit pattern; and (e) forming the cavity by peeling off the first dry film and the second dry film after removing the seed layer. The method for manufacturing a substrate with a cavity in accordance with the present invention can improve the efficiency of a substrate manufacturing process by using both sides of a seed layer to manufacture the substrate with a cavity.
Abstract:
An optical pickup actuator and a method thereof includes a bobbin having a lens to scan a laser beam on a track of a disc, a winding coil moving the bobbin on the track in focusing and tracking directions, and an integrated circuit board used as the bobbin using a printed circuit board manufacturing technology and integrally formed with the winding coil in a monolithic body. The bobbin used with the optical pickup actuator includes the printed circuit board, a plurality of tracking circuit patterns formed on both surfaces of the PCB, a plurality of focusing circuit patterns formed on the both surfaces of the PCB, a plurality of via holes formed on the PCB to electrically connect the tracking circuit patterns and the focusing circuit patterns, an objective lens mounting unit formed on the PCB, and a connecting pad through which a power is supplied to the tracking and focusing circuit patterns.
Abstract:
A single-layer board on chip package substrate and a method of manufacturing the same are disclosed. The single-layer board on chip package substrate in accordance with an embodiment of the present invention includes an insulator, which has a window perforated therethrough, a wiring pattern, a wire bonding pad and a solder ball pad, which are embedded in one surface of the insulator, and a solder resist layer, which is formed on the one surface of the insulator such that the solder resist layer covers the wiring pattern but at least portions of the wire bonding pad and the solder ball pad are exposed.
Abstract:
A method of manufacturing a mounting substrate, the method including: providing an insulation layer, the insulation layer having a circuit pattern formed in one side thereof; forming at least one bonding pad in the other side of the insulation layer, the bonding pad electrically connected with the circuit pattern; and etching the bonding pad such that a surface of the bonding pad is recessed from a surface of the insulation layer by a predetermined depth.
Abstract:
A method of manufacturing a board on chip package including laminating a dry film on a carrier film, one side of which is laminated by a thin metal film; patterning the dry film in accordance with a circuit wire through light exposure and developing process, and forming a solder ball pad and a circuit wire; removing the dry film; laminating an upper photo solder resist excluding a portion where the solder ball pad is formed; etching the thin metal film formed on a portion where the upper photo solder resist is not laminated; mounting a semiconductor chip on the solder ball pad by a flip chip bonding; molding the semiconductor chip with a passivation material; removing the carrier film and the thin metal film; and laminating a lower photo solder resist under the solder ball pad. The board on chip package provides a high density circuit since a circuit pattern is formed using a seed layer.