Abstract:
A millimeter wave three dimensional holographic scan imaging apparatus and a method for inspecting a human body or an article are disclosed. The apparatus comprises a first millimeter wave transceiver module, a second millimeter wave transceiver module, a first guide rail device to which the first millimeter wave transceiver module is connected in slidable form, a second guide rail device to which the second millimeter wave transceiver module is connected in slidable form, a driver configured to drive the first/second millimeter wave transceiver module to move along the first/second guide rail device, and a constrainer configured to constrain kinematic relation between the first and the second millimeter wave transceiver modules such that they only move in directions opposed to each other. They may increase scan speeds, improve scan stability, reduce scan operations and enhance the reliability of the apparatus.
Abstract:
Disclosed are methods and apparatuses for creating a 3-Dimensional model for objects in an inspected luggage in a CT system. The method includes acquiring slice data of the luggage with the CT system; interpolating the slice data to generate 3D volume data of the luggage; performing unsupervised segmentation on the 3D volume data of the luggage to obtain a plurality of segmental regions; performing isosurface extraction on the plurality of segmental regions to obtain corresponding isosurfaces; and performing 3D surface segmentation on the isosurfaces to form a 3D model for the objects in the luggage. The above solutions can create a 3D model for objects in the inspected luggage in a relatively accurate manner, and thus provide better basis for subsequent shape feature extraction and security inspection, and reduce omission factor.
Abstract:
Methods and apparatuses for measuring an effective atomic number of an object are disclosed. The apparatus includes: a ray source configured to product a first X-ray beam having a first energy and a second X-ray beam having a second energy; a Cherenkov detector configured to receive the first X-ray beam and the second X-ray beam that pass through an object under detection, and to generate a first detection value and a second detection value; and a data processing device configured to obtain an effective atomic number of the object based on the first detection value and the second detection value. The Cherenkov detector can eliminate disturbance of X-rays below certain energy threshold with respect to the object identification, and thus accuracy can be improved for object identification.
Abstract:
A system and method for customs inspection and release are disclosed. In one aspect, a system includes a device layer of devices for inspection and release, at least some of which generate subject detection data. The system also includes an adaptor layer of adaptors corresponding to the devices that receive detection data from its corresponding device and convert it into an event in a formatted message. The system also includes a message service layer including a bus that receives events from the adaptor layer and constructs event messages based on them. The system also includes a processing control layer that receives and processes event messages, generates instructions associated with them, and transmits the instructions to the message service layer, which constructs instruction messages based on the received instructions and transmits them to the adaptor layer. The adaptor layer converts them into device instructions that operate based on them.
Abstract:
A human body back-scattering inspection system is disclosed. The system comprises a flying-spot forming unit configured to output beams of X-rays, a plurality of discrete detectors which are arranged vertically along a human body to be inspected, and a controlling unit coupled to the flying-spot forming unit and the plurality of detectors, and configured to generate a control signal to control the flying-spot forming unit and the plurality of detectors to perform a partition synchronous scan on the human body to be inspected vertically. The present disclosure utilizes the geometry property of the human body back-scattering inspection system, and proposes a multiple-point synchronous scan mechanism which largely accelerates the inspection of human body.
Abstract:
The present invention relates to a Computed Tomography (CT) imaging system, in particular to a multi-energy CT imaging system and imaging method.
Abstract:
An ion mobility spectrometer system is disclosed. In one aspect, the system includes a gas chromatograph, first and second ion mobility spectrometers, and a sample feed device that feeds a sample from the gas chromatograph to the first and second ion mobility spectrometers. The sample feed device includes an inner chamber, first and second sample outlets for outputting the sample from the gas chromatograph to the first and second ion mobility spectrometers, respectively, and a gas inlet for inputting a gas into the sample feed device. The system detects and identifies molecules at improved resolution and enhanced molecule information. The system detects positive and negative ions, interrelates positive-mode and negative-mode spectrums, and separates substances.
Abstract:
Embodiments include an X-ray generator including a radiation device installation housing and an X-ray generator. In various embodiments, the radiation device installation housing comprises a housing body, a flange fixedly provided on an inner wall of the housing body and shaped in circular and a compensation device fixedly or movably connected with the flange in a liquid tight manner; a liquid receiving cavity for receiving an insulating liquid formed between one side of two opposite sides of the compensation device and the inner wall of the housing body as well as the flange; a compensation device moving space formed between another side of the two opposite sides of the compensation device opposed to the inner wall of the housing body and an inner wall of the flange.
Abstract:
A raman spectrum measuring method for drug inspection is provided, comprising: measuring raman spectrum of a sample to be inspected to acquire an original raman spectrum curve of the sample; determining whether the original raman spectrum curve has a characterizing portion, and if not, measuring a mixture of the sample and an enhancing agent to acquire an enhanced raman spectrum curve of the sample; and if the original raman spectrum curve of the sample to be inspected has a characterizing portion, comparing the original raman spectrum curve of the sample with data in an original raman spectrum database of a drug to determine whether the sample contains the drug, otherwise, comparing the enhanced raman spectrum curve of the sample with data in an enhanced raman spectrum database of the drug to determine whether the sample to be inspected contains the drug.
Abstract:
The present disclosure provides an X-ray backscattering safety Inspection system, comprising: one or more backscattering inspection subsystem configured to inspect an object to be inspected by emitting X-ray beams towards the object to be inspected and inspecting scattering signals; and a control subsystem configured to adjust a distance between the backscattering inspection subsystem and locations on a side of the object to be inspected where are irradiated by the X-ray beams in real time according to a size of the object to be inspected such that the scattering signals inspected are optimized. The system may be adapted to objects to be inspected with different sizes or shapes while enhancing backscattering signals for imaging.