Abstract:
A semiconductor stripe laser has a first semiconductor region having a first conductivity type and a second semiconductor region having a different, second conductivity type. An active zone for generating laser radiation is located between the semiconductor regions. A stripe waveguide is formed in the second semiconductor region and is arranged to guide waves in a one-dimensional manner and is arranged for a current density of at least 0.5 kA/cm2. A second electrical contact is located on the second semiconductor region and on an electrical contact structure for external electrical contacting. An electrical passivation layer is provided in certain places on the stripe waveguide. A thermal insulation apparatus is located between the second electrical contact and the active zone and/or on the stripe waveguide.
Abstract translation:半导体条纹激光器具有具有第一导电类型的第一半导体区域和具有不同的第二导电类型的第二半导体区域。 用于产生激光辐射的活性区域位于半导体区域之间。 条纹波导形成在第二半导体区域中,并且被布置成以一维方式引导波,并且布置成至少0.5kA / cm 2的电流密度。 第二电接触位于第二半导体区域上并且位于用于外部电接触的电接触结构上。 在条形波导上的某些位置提供电钝化层。 绝热装置位于第二电触点和有源区之间和/或条带波导上。
Abstract:
A laser diode assembly includes a housing having a housing part and a mounting part that is connected to the housing part and that extends away from the housing part along an extension direction. A laser diode chip is disposed on the mounting part. The laser diode chip has, on a substrate, semiconductor layers with an active layer for emitting light. The housing part and the mounting part have a main body composed of copper and at least the housing part is steel-sheathed. A first solder layer having a thickness of greater than or equal to 3 μm is arranged between the laser diode chip and the mounting part.
Abstract:
A laser diode device has a housing with a mounting part and a laser diode chip, which is based on a nitride compound semi-conductor material, in the housing on the mounting part. The laser diode chip is mounted directly on the mounting part by means of a solder layer and the solder layer has a thickness of greater than or equal to 3 μm.
Abstract:
An assembly has a columnar structure arranged with one end on a substrate, wherein the structure is at least partly covered with a semiconductor layer structure having an active zone that generates electromagnetic radiation, the active zone has a band gap for a radiative recombination, and the band gap decreases along a longitudinal axis of the structure in a direction of a free end of the structure such that a diffusion of charge carriers in the direction of the free end of the structure and a radiative recombination of charge carrier pairs in the region of the free end of the structure are supported.
Abstract:
A laser diode device is specified, comprising a housing having a mounting part and a laser diode chip based on a nitride compound semiconductor material in the housing on the mounting part, wherein the laser diode chip is mounted directly on the mounting part using a solder layer, and the solder layer has a thickness of greater than or equal to 3 μm.
Abstract:
A semiconductor laser diode includes a substrate. A semiconductor layer sequence on the substrate has at least one active layer designed for generating laser light that is emitted along an emission direction during operation. At least one filter layer has a main extension plane that is parallel to a main extension plane of the active layer and that is designed to scatter and/or absorb light that propagates in the semiconductor layer sequence and/or the substrate in addition to the laser light.
Abstract:
An optoelectronic semiconductor device and a method for manufacturing an optoelectronic semiconductor device are disclosed. In an embodiment an optoelectronic semiconductor device includes a semiconductor body having a first region of a first conductive type, an active region configured to generate electromagnetic radiation, a second region of a second conductive type and a coupling-out surface configured to couple-out the electromagnetic radiation, wherein the first region, the active region and the second region are arranged along a stacking direction, wherein the active region extends from a rear surface opposite the coupling-out surface to the coupling-out surface along a longitudinal direction transverse to or perpendicular to the stacking direction, and wherein the coupling-out surface is arranged plane-parallel to the rear surface.
Abstract:
The invention relates to a method for producing a radiation-emitting semiconductor body, including the following steps: providing a growth substrate having a main surface; producing a plurality of distributor structures on the main surface of the growth substrate; epitaxially depositing a compound semiconductor material on the main surface of the growth substrate, wherein the epitaxial growth of the compound semiconductor material varies along the main surface because of the distributor structures, such that the epitaxial deposition produces an epitaxial semiconductor layer sequence having at least a first emitter region and a second emitter region on the main surface, the first emitter region and the second emitter region being laterally adjacent to each other in a top view of a main surface of the semiconductor body, and the first emitter region and the second emitter region producing electromagnetic radiation of different wavelength ranges during operation. The invention also relates to a radiation-emitting semiconductor body.
Abstract:
A semiconductor laser diode is disclosed. In an embodiment a semiconductor laser diode includes a first resonator and a second resonator, the first and second resonators having parallel resonator directions along a longitudinal direction and being monolithically integrated into the semiconductor laser diode, wherein the first resonator includes at least a part of a semiconductor layer sequence having an active layer and an active region configured to be electrically pumped to generate a first light, wherein the longitudinal direction is parallel to a main extension plane of the active layer, and wherein the second resonator has an active region with a laser-active material configured to be optically pumped by at least a part of the first light to produce a second light which is partially emitted outwards from the second resonator.
Abstract:
A semiconductor laser diode is specified, the semiconductor laser diode includes a semiconductor layer sequence having an active layer which has a main extension plane and which, in operation, is adapted to generate light in an active region and to emit light via a light-outcoupling surface, the active region extending from a rear surface opposite the light-outcoupling surface to the light-outcoupling surface along a longitudinal direction in the main extension plane, the semiconductor layer sequence having a surface region on which a first cladding layer is applied in direct contact, the first cladding layer having a transparent material from a material system different from the semiconductor layer sequence, and the first cladding layer being structured and having a first structure.