Abstract:
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
Abstract:
A method and system for calibrating temperature measurement devices, such as pyrometers, in thermal processing chambers are disclosed. According to the present invention, the system includes a calibrating light source that emits light energy onto a substrate contained in the thermal processing chamber. A light detector then detects the amount of light that is being transmitted through the substrate. The amount of detected light energy is then used to calibrate a temperature measurement device that is used in the system.
Abstract:
A method and system for calibrating temperature measurement devices, such as pyrometers, in thermal processing chambers are disclosed. According to the present invention, the system includes a calibrating light source that emits light energy onto a substrate contained in the thermal processing chamber. A light detector then detects the amount of light that is being transmitted through the substrate. The amount of detected light energy is then used to calibrate a temperature measurement device that is used in the system.
Abstract:
An approach for optimizing the thermal budget during a pulsed heating process is disclosed. A heat sink or thermal transfer plate is configured and positioned near an object, such as a semiconductor wafer, undergoing thermal treatment. The heat sink is configured to enhance the thermal transfer rate from the object so that the object is rapidly brought down from the peak temperature after an energy pulse. High thermally-conductive material may be positioned between the plate and the object. The plate may include protrusions, ribs, holes, recesses, and other discontinuities to enhance heat transfer and avoid physical damage to the object during the thermal cycle. Additionally, the optical properties of the plate may be selected to allow for temperature measurements via energy measurements from the plate, or to provide for a different thermal response to the energy pulse. The plate may also allow for pre-heating or active cooling of the wafer.
Abstract:
Methods and apparatus for wafer temperature measurement and calibration of temperature measurement devices may be based on determining the absorption of a layer in a semiconductor wafer. The absorption may be determined by directing light towards the wafer and measuring light reflected from the wafer from below the surface upon which the incident light impinges. Calibration wafers and measurement systems may be arranged and configured so that light reflected at predetermined angles to the wafer surface is measured and other light is not. Measurements may also be based on evaluating the degree of contrast in an image of a pattern in or on the wafer. Other measurements may utilize a determination of an optical path length within the wafer alongside a temperature determination based on reflected or transmitted light.
Abstract:
A method and apparatus for heating semiconductor wafers in thermal processing chambers is disclosed. The apparatus includes a non-contact temperature measurement system that utilizes radiation sensing devices, such as pyrometers, to determine the temperature of the wafer during processing. The radiation sensing devices determine the temperature of the wafer by monitoring the amount of radiation being emitted by the wafer at a particular wavelength. In accordance with the present invention, a spectral filter is included in the apparatus for filtering light being emitted by lamps used to heat the wafer at the wavelength at which the radiation sensing devices operate. The spectral filter includes a light absorbing agent such as a rare earth element, an oxide of a rare earth element, a light absorbing dye, a metal, or a semiconductor material.
Abstract:
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.