Abstract:
A process for making hermetic, low cost pin grid array (PGA) semiconductor die packages. The process involves die bonding a semiconductor die or integrated circuit chip to a substrate having an interconnect or metallization pattern thereon. The die is electrically connected to the pattern and then the die and the inner bonds are hermetically sealed inside a cap that is smaller than the substrate so that the ends of the metallization pattern are exposed. The leads are then electrically connected, such as by solder or other technique to the exposed ends of the pattern.
Abstract:
An integrated circuit package having a plurality of leads capable of holding a quantity of solder paste prior to bonding to a printed circuit board or other substrate. The solder paste bearing structure may be straight or spiral grooves, or even a slot or roughened surface, running down at least the lower length of the leads as long as some mechanism is present which will first hold the solder paste or other electrically conductive binder on the lead and then deliver the binder to the end of the lead to produce an electrical and structural bond in a binder flowing operation. Application of the solder paste to the leads is accomplished by simply dipping the package leads into the paste thereby eliminating the need to make a solder mask for the substrate as well as the task of aligning the mask to the substrate.
Abstract:
A multilayer ceramic, multi-chip, dual in-line packaging assembly comprises a ceramic substrate with a pair of semiconductor chip receiving cavities therein. A metalization pattern partially embedded within the substrate provides electrical paths for semiconductor chip devices joined thereto to external circuitry. Semiconductor chips are joined to exposed pads within the chip receiving cavities. Metalization spaced from and positioned beneath the semiconductor chip devices completes interconnections between semiconductor chip devices. Exposed finger areas are spaced from one another and about the semiconductor chip receiving cavities. Embedded lines extend from the finger areas to external circuitry and interconnection means extend between finger areas. Finger areas on one side of a chip receiving cavity are offset with respect to the finger areas on the opposite side of the same chip receiving cavity but aligned with the finger areas on an adjacent chip receiving cavity to minimize crossover connections as well as the electrical coupling. An identical bonding design for each cavity also results. A lead frame is brazed to the substrate at its edges. A lid is bonded to the top surface of the substrate to hermetically seal chips within the chip receiving cavities thereby completing assembly of the package.
Abstract:
The present invention discloses the structure and process for fabrication of an electronic package to contain and protect Package-to-Package (P2P) stacked module of integrated circuit (IC) chips. The process includes a step of providing an interposer that includes conductive traces interconnected between pre-designated contact pads disposed on a top and/or bottom surfaces for mounting at least a top or bottom packages of the IC chips with electric terminals contacting the contact pads disposed on the top and/or bottom surface of the interposer. Standoffs and passive components can also be added onto interposer in order to improve solder joints reliability, electrical performance and main board density at the same time. The inclusion of passive components on the interposer could enhance the electrical performance and the testability of the finished package stack.
Abstract:
The present invention provides a solution to the problem of weakening bond integrity in integrated circuit devices due in part to test probes galling and weakening the interconnect pads during functional and reliability test probing. In doing so, the invention enables a lowering of the chance a bond wire or interconnect pad will be lifted during a wire bonding process or in normal operation of an integrated circuit device.
Abstract:
The present invention comprises a single-substrate multiple chip module (MCM) assembly. The MCM assembly includes a repair-package-site ready MCM board having a top surface and a bottom surface, the top surface further includes a plurality of chip connection trace lines include a chip-select line. The MCM assembly further includes a plurality of bare integrated circuit (IC) chips mounted directly on the top surface of the MCM board each chip connected to the plurality of chip connection trace lines on the top surface. The repair-package-site ready MCM board further includes at least a repair-package-site disposed on the bottom surface having a plurality of connection terminals arranged according to a standard repair packaged-chip footprint. Each of the connection terminals is connected to a via connector disposed in the MCM board for electrically connecting to the conductive trace lines on the top surface. The MCM assembly further includes a chip-select jumper means for disconnecting the chip select line for one of the bare IC chips as a disconnected chip and to connect to one of the repair-package-site provided for mounting a repair packaged-chip onto the bottom surface.
Abstract:
The present invention discloses a face-to-face (FTF) stacked integrated circuit (IC) assembly. The FTF stacked IC assembly includes a first and a second substrate-on-bare-chip (SOBC) modules. Each of the first and second SOBC modules includes a printed circuit board (PCB) having a PCB bottom surface overlying an active circuit surface of a bare integrated circuit (IC) chip. The PCB includes a window opened substantially in a central portion of the active circuit surface of the bare IC chip. The bare IC chip includes bare-chip bonding-pads disposed on the active circuit surface in the window and the PCB includes a plurality of PCB bonding pads. Each of the first and second SOBC modules includes a plurality of bonding wires interconnecting the bare-chip bonding pads to the PCB bonding pads. Each of the first and second SOBC modules includes a plurality of solder balls disposed on a PCB top surface of the PCB connected to the PCB bonding pads with a plurality of metal traces disposed on the PCB board. The solder balls of first SOBC module mounted on the solder balls of the second SOBC module constituting a face-to-face (FTF) stacked SOBC assembly.
Abstract:
A ball grid array semiconductor device (10) includes a package substrate (14 or 16) having a plurality of conductive traces (18), bond posts (20), and conductive vias (22). A semiconductor die (12) is mounted to the package substrate. Orthogonal wire bonds (28) are used to electrically connect staggered bond pads (26) to corresponding bond posts (20) on the substrate. A liquid encapsulant (40) is used to cover the die, the wire bonds, and portions of the package substrate. In another embodiment, a package substrate (50) includes a lower bonding tier (52) and an upper bonding tier (54). Wire bonds (60) are used to electrically connect an outer row of bond pads (64) to bond posts (20) of lower tier (52), while wire bonds (62) are used to electrically connect an inner row of bond pads (64) to bond posts (20) of an upper tier (54). The loop height of wire bonds (60) is smaller than that of wire bonds (62).
Abstract:
A quad leadframe (22') for a CERQUAD is manufactured using conventional cladding and stamping technologies. A first metal layer (12) is provided with multiple cavities (14). A second metal layer (14) is clad to the first metal layer. A leadframe strip (22) can then be stamped from the clad metal. The leadframe has a leads (24) and bonding posts (28). The leads comprise two metal layers, and the bonding posts comprise only the second metal layer. The leadframe can then be used in the assembly of a semiconductor device (32). The portion of the leads external to the package body can be optionally etched to remove the second metal layer.
Abstract:
An improved semiconductor device is disclosed having a predetermined amount of solder, or other electrically conductive binder adsorbed onto the exterior package leads of the semiconductor device. A de-wettable coating comprising preferably nickel, or alternatively chromium, is plated to a superior portion of the package leads, such that, when the heat is applied to the substrate mounting end of the leads, solder desorbes from the de-wettable layer and flows down the lead to the contact pads on the mounting substrate and forms a solder joint. The amount of solder delivered to the contact pad for joint formation is determined by the thickness of the adsorbed solder layer overlying each package lead. Only enough solder is provided on each lead sufficient to form the joint thus avoiding solder bridging between adjacent contact pads.