Abstract:
A device for producing a subwavelength hologram. The device comprises a metasurface layer attached to a substrate. The metasurface layer includes an array of plasmonic antennas that simultaneously encode both wavelength and phase information of light directed through the array to produce a hologram. The wavelength is determined by the size of the antennas, and the phase is determined by the orientation of the antennas.
Abstract:
A method of providing super-resolved images of a photon emitting particle is disclosed, which includes providing a machine-learning (ML) platform, wherein the ML platform is configured to receive pixel-based sparse autocorrelation data and generate a predicted super-resolved image of a photon emitting particle, receiving photons from the photon emitting particle by two or more photon detectors, each generating an electrical pulse associated with receiving an incident photon thereon, generating sparse autocorrelation data from the two or more photon detectors for each pixel within an image area, and inputting the pixel-based sparse autocorrelation data to the ML platform, thereby generating a predicted super-resolved image of the imaging area, wherein the resolution of the super-resolved image is improved by √n as compared to a classical optical microscope limited by Abbe diffraction limit.
Abstract:
A thermoplasmonic device includes a titanium film and a plurality of titanium nitride tube elements disposed on the titanium film. Each of the titanium nitride tube elements includes an open top and a titanium nitride bottom. Each of the titanium nitride tube elements has titanium nitride tubular middle portion that extends from the open top to the titanium nitride bottom.
Abstract:
An optical device, wherein the optical device includes a dielectric layer over a mirror layer. The optical device further includes a plurality of plasmonic nanoparticles over the dielectric layer. Additionally, the optical device includes a protective layer over the plurality of plasmonic nanoparticles.
Abstract:
Methods of fabricating single photon emitters (SPEs) including nanoindentation of hexagonal boron nitride (hBN) host materials and annealing thereof, devices formed from such methods, and chips with a single photon emitter. A substrate with a layer of hBN is provided. Nanoindentation is performed on the layer of hBN to produce an array of sub-micron indentations in the layer of hBN. The layer of hBN is annealed to activate SPEs near the indentations. Devices include a substrate with an SPE produced in accordance with the methods. Chips include a substrate, an hBN layer, and an SPE including an indentation on the hBN layer, in which the substrate is not damaged at the indentation.
Abstract:
A thermoplasmonic device includes a titanium film and a plurality of titanium nitride tube elements disposed on the titanium film. Each of the titanium nitride tube elements includes an open top and a titanium nitride bottom. Each of the titanium nitride tube elements has titanium nitride tubular middle portion that extends from the open top to the titanium nitride bottom.
Abstract:
A nanostructured material system for efficient collection of photo-excited carriers is provided. They system comprises a plurality of plasmonic metal nitride core material elements coupled to a plurality of semiconductor material elements. The plasmonic nanostructured elements form ohmic junctions at the surface of the semiconductor material or at close proximity with the semiconductor material elements. A nanostructured material system for efficient collection of photo-excited carriers is also provided, comprising a plurality of plasmonic transparent conducting oxide core material elements coupled to a plurality of semiconductor material elements. The field enhancement, local temperature increase and energized hot carriers produced by nanostructures of these plasmonic material systems play enabling roles in various chemical processes. They induce, enhance, or mediate catalytic activities in the neighborhood when excited near the resonance frequencies.
Abstract:
A plasmonic system is disclosed. The system includes at least one polarizer that is configured to provide at least one linearly polarized broadband light beam, an anisotropic plasmonic metasurface (APM) assembly having a plurality of nanoantennae each having a predetermined orientation with respect to a global axis representing encoded digital data, the APM assembly configured to receive the at least one linearly polarized broadband light beam and by applying localized surface plasmon resonance reflect light with selectable wavelengths associated with the predetermined orientations of the nanoantennae, and at least one analyzer that is configured to receive the reflected light with selectable wavelength, wherein the relative angles between each of the at least one analyzers and each of the at least one polarizers are selectable with respect to the global axis, thereby allowing decoding of the digital data.
Abstract:
A system of writing to and reading from a magnetic nanostructure is disclosed which includes an opto-magnetic write arrangement including a polarizer configured to receive incident light and provide a circularly or linearly polarized light, wherein light polarization is controlled by the polarizer and its orientation with respect to polarization of the incident light, a nanomagnetic structure configured to receive the polarized light including a substrate, and a nanomagnetic stack including a nanomagnet, and a capping layer, wherein the nanomagnetic stack is configured to receive the polarized light and thereby switch orientation of a magnetic moment associated with the magnetic nanostructure whereby the magnetic moment direction specifies a bit value held in the magnetic structure, and a magnetic read arrangement, configured to receive and interpret an optical signal from the magnetic nanostructure indicating the magnetic moment orientation from the nanomagnetic stack.
Abstract:
A device for producing a subwavelength hologram. The device comprises a metasurface layer attached to a substrate. The metasurface layer includes an array of plasmonic antennas that simultaneously encode both wavelength and phase information of light directed through the array to produce a hologram. The wavelength is determined by the size of the antennas, and the phase is determined by the orientation of the antennas.