Abstract:
A plurality of storage nodes is provided. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. The plurality of storage nodes is configured to initiate an action based on the redundant copies of the metadata, responsive to achieving a level of redundancy for the redundant copies of the metadata. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes in the single chassis is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. The plurality of storage nodes configured to initiate an action based on the redundant copies of the metadata, responsive to achieving a level of redundancy for the redundant copies of the metadata. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
A method of applying an address space to data storage in a non-volatile solid-state storage is provided. The method includes receiving a plurality of portions of user data for storage in the non-volatile solid-state storage and assigning to each successive one of the plurality of portions of user data one of a plurality of sequential, nonrepeating addresses of an address space. The address range of the address space exceeds a maximum number of addresses expected to be applied during a lifespan of the non-volatile solid-state storage. The method includes writing each of the plurality of portions of user data to the non-volatile solid-state storage such that each of the plurality of portions of user data is identified and locatable for reading via the one of the plurality of sequential, nonrepeating addresses of the address space.
Abstract:
A method for storing data in a storage system having solid-state memory is provided. The method includes determining portions of the solid-state memory that have a faster access rate and portions of the solid-state memory that have a slower access rate, relative to each other or to a threshold. The method includes writing data bits of erasure coded data to the portions of the solid-state memory having the faster access rate, and writing one or more parity bits of the erasure coded data to the portions of the solid-state memory having the slower access rate. A storage system is also provided.
Abstract:
Accelerating artificial intelligence workflows, including: receiving, from a computing process of an artificial intelligence workflow, a request for information stored on a data repository; issuing, from a user space of an operating system environment, parallel requests to the data repository using a network protocol that operates serially at the kernel level of the operating system environment; receiving, from the data repository, one or more responses to the parallel requests; and providing, to the computing process of the artificial intelligence workflow and based on the one or more responses to the parallel requests, a response to the request for information.
Abstract:
A method for storing data in a storage system having solid-state memory is provided. The method includes determining a first portion of the solid-state memory having a lower read latency than a second portion of the solid-state memory, relative to each other or to a threshold. The method includes writing data bits of erasure coded data to the first portion of the solid-state memory, and writing one or more parity bits of the erasure coded data to the second portions of the solid-state memory. A storage system is also provided.
Abstract:
Data transformation caching in an artificial intelligence infrastructure that includes one or more storage systems and one or more graphical processing unit (‘GPU’) servers, including: identifying, in dependence upon one or more machine learning models to be executed on the GPU servers, one or more transformations to apply to a dataset; generating, in dependence upon the one or more transformations, a transformed dataset; storing, within one or more of the storage systems, the transformed dataset; receiving a plurality of requests to transmit the transformed dataset to one or more of the GPU servers; and responsive to each request, transmitting, from the one or more storage systems to the one or more GPU servers without re-performing the one or more transformations on the dataset, the transformed dataset.
Abstract:
An artificial intelligence and machine learning infrastructure system, including: one or more storage systems comprising, respectively, one or more storage devices; and one or more graphical processing units, wherein the graphical processing units are configured to communicate with the one or more storage systems over a communication fabric; where the one or more storage systems, the one or more graphical processing units, and the communication fabric are implemented within a single chassis.
Abstract:
A non-volatile solid-state storage is provided. The non-volatile solid state storage includes a non-volatile random access memory (NVRAM) addressable by a processor external to the non-volatile solid state storage. The NVRAM is configured to store user data and metadata relating to the user data. The non-volatile solid state storage includes a flash memory addressable by the processor. The flash memory is configured to store the user data responsive to the processor directing transfer of the user data from the NVRAM to the flash memory.
Abstract:
A plurality of storage nodes is provided. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. The plurality of storage nodes is configured to initiate an action based on the redundant copies of the metadata, responsive to achieving a level of redundancy for the redundant copies of the metadata. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.