Abstract:
A robot for performing hand-eye calibration is provided. The robot includes a robot arm including a plurality of joints, a plurality of arm sections, and an end effector, a communication interface, and a control circuit. The control circuit controls the robot arm to place the external object on a worktable after the external object is grasped by the end effector, acquires coordinates of a central point of the external object in a coordinate system of the camera from an image of the external object, and calculates a calibration parameter for defining a relation between a coordinate system of the end effector and the coordinate system of the camera, based on coordinates of the end effector in a base coordinate system of the robot and coordinates of the central point of the external object in the coordinate system of the camera when the external object is placed on the worktable.
Abstract:
A mobile robot and method for controlling the same are provided creating patches in images captured by a camera while the mobile robot is moving, estimating motion blur of the patches, and correcting the position of the mobile robot based on the patch from which the motion blur is eliminated, thereby increasing precision in tracking and reliability through accurate mapping. The mobile robot includes a main body, a traveler to move the main body, a camera combined with the main body to capture an image of a surrounding of the main body, a position detector to create a patch in the image captured by the camera, estimate a motion blur of the patch, and track a position of the main body based on the created patch from which the motion blur is eliminated, and a controller to control the traveler based on the position of the main body.
Abstract:
A home robot device includes a memory, a movement module, and a processor. The processor is configured to execute a motion based on specified motion execution information stored in the memory, obtain feedback information of a user, generate modified motion execution information by modifying at least a portion of the specified motion execution information based on the feedback information of the user, where the modified motion execution information includes a movement value of at least one joint unit of the home robot device or at least one support linked to the at least one joint unit selected from a probability model of the specified motion execution information, and execute a motion of the home robot device based on the modified motion execution information.
Abstract:
Provided are a walk-assistive robot and a method of controlling the same. The method of controlling the walk-assistive robot includes: obtaining ground information that is information regarding ground a walking direction; determining control patterns of the walk-assistive robot by analyzing the obtained ground information; and controlling the walk-assistive robot based on the determined control patterns.
Abstract:
A control method of a walking assist robot, may include: estimating a wearer's location on a map including walking environment information; determining a walking environment in a direction in which the wearer moves; and selecting a control mode for assisting the wearer's walking according to the walking environment.
Abstract:
A mobile apparatus and a localization method thereof which perform localization of the mobile apparatus using a distributed filter system including a plurality of local filters independently operated and one fusion filter integrating results of localization performed through the respective local filters, and additionally apply accurate topological absolute position information to the distributed filter system to improve localization performance (accuracy, convergence and speed in localization, etc.) of the mobile apparatus on a wide space. The mobile apparatus includes at least one sensor, at least one first distribution filter generating current relative position information using a value detected by the at least one sensor, at least one second distribution filter generating current absolute position information using the value detected by the at least one sensor, and a fusion filter integrating the relative position information and the absolute position information to perform localization.
Abstract:
A method of controlling a mobile apparatus includes acquiring a first original image and a second original image, extracting a first feature point of the first original image and a second feature point of the second original image, generating a first blurring image and a second blurring image by blurring the first original image and the second original image, respectively, calculating a similarity between at least two images of the first original image, the second original image, the first blurring image, and the second blurring image, determining a change in scale of the second original image based on the calculated similarity, and controlling at least one of an object recognition and a position recognition by matching the second feature point of the second original image to the first feature point of the first original image based on the change in scale.
Abstract:
A surgical robot system includes a slave system to perform a surgical operation on a patient and an imaging system that includes an image capture unit including a plurality of cameras to acquire a plurality of affected area images, an image generator detecting an occluded region in each of the affected area images acquired by the plurality of cameras, removing the occluded region therefrom, warping each of the affected area images from which the occluded region is removed, and matching the affected area images to generate a final image, and a controller driving each of the plurality of cameras of the image capture unit to acquire the plurality of affected area images and inputting the acquired plurality of affected area images to the image generator to generate a final image.
Abstract:
An object recognition method, a descriptor generating method for object recognition, and a descriptor for object recognition capable of extracting feature points using the position relationship and color information relationship between points in a group that are sampled from an image of an object, and capable of recognizing the object using the feature points, the object recognition method including extracting feature components of a point cloud using the position information and the color information of the points that compose the point cloud of the three-dimensional (3D) image of an object, generating a descriptor configured to recognize the object using the extracted feature components; and performing the object recognition based on the descriptor.
Abstract:
A mobile apparatus and a localization method thereof which perform localization of the mobile apparatus using a distributed filter system including a plurality of local filters independently operated and one fusion filter integrating results of localization performed through the respective local filters, and additionally apply accurate topological absolute position information to the distributed filter system to improve localization performance (accuracy, convergence and speed in localization, etc.) of the mobile apparatus on a wide space. The mobile apparatus includes at least one sensor, at least one first distribution filter generating current relative position information using a value detected by the at least one sensor, at least one second distribution filter generating current absolute position information using the value detected by the at least one sensor, and a fusion filter integrating the relative position information and the absolute position information to perform localization.