Abstract:
A system for sorting fine nonferrous metals and insulated copper wire from a batch of mixed fine nonferrous metals and insulated wire includes an array of inductive proximity detectors, a processing computer and a sorting mechanism. The inductive proximity detectors identify the location of the fine nonferrous metals and insulated copper wire. The processing computer instructs the sorting mechanism to place the fine nonferrous metals and insulated copper wire into a separate container than the non-metallic pieces.
Abstract:
A system for recovering of metal and sand from incinerator ash material having an ash clarification assembly. a magnet to remove the ferrous from the heavy material; a sorting assembly, a drying cage or dewatering unit to dry the material; and a separation assembly to remove the aluminum from the material. Methods are included as well.
Abstract:
A system for recovering of metal and sand from incinerator ash material having an ash clarification assembly, a magnet to remove the ferrous from the heavy material; a sorting assembly, a drying cage or dewatering unit to dry the material; and a separation assembly to remove the aluminium from the material. Methods are included as well.
Abstract:
Separating a mixture comprising at least two solid materials comprises transporting the mixture into a plenum, introducing air into the plenum, removing a heavier fraction of the solid materials from the plenum, removing air having a lighter fraction of the solid materials entrained therein from the plenum, removing the lighter fraction of the solid materials from the air that is removed from the plenum, filtering the remaining air, and re-circulating the air back to the plenum. Valves at the locations where material is introduced to and removed from the system can prevent air flow therethrough while allowing the materials to pass. The air can be introduced into the plenum at an angle with respect to the pathway in which the heavier fraction of the materials falls through the plenum, thereby avoiding damage to a screen that diffuses the air being introduced into the plenum.
Abstract:
Separating a mixture comprising at least two solid materials comprises transporting the mixture into a plenum, introducing air into the plenum, removing a heavier fraction of the solid materials from the plenum, removing air having a lighter fraction of the solid materials entrained therein from the plenum, removing the lighter fraction of the solid materials from the air that is removed from the plenum, filtering the remaining air, and re-circulating the air back to the plenum. Valves at the locations where material is introduced to and removed from the system can prevent air flow therethrough while allowing the materials to pass. The air can be introduced into the plenum at an angle with respect to the pathway in which the heavier fraction of the materials falls through the plenum, thereby avoiding damage to a screen that diffuses the air being introduced into the plenum.
Abstract:
Processing waste materials to recover valuable metals, such as copper, from the materials. The disclosed methods employ processes that further refine the waste materials to concentrate the metallic material after the waste materials are initially processed. Processes include employing mechanical separation, air separation, sizing, and density separation.
Abstract:
Sorting dissimilar materials, such as sorting plastics from wood, foam, or rubber. These systems and methods employ either dielectric heating or fluorescent dye absorption characteristics of materials to distinguish the materials. The systems and methods may employ differential dielectric heating and thermal imaging to sort wood, rubber, and foam, from plastic, metals, and other materials that do not undergo dielectric heating. Similarly, systems and methods may employ the greater liquid absorption properties of wood, rubber, and foam as compared to plastic. The dissimilar materials are subjected to fluorescent dye and carrier liquid, that is differentially absorbed by objects. Fluorescent imaging can be used to distinguish the materials. In either case, a computer-controlled system can be used to sort material types based on an evaluation of the thermal or fluorescent image.
Abstract:
A system for sorting metals from a batch of mixed material scrap includes an array of inductive proximity detectors, a processing computer and a sorting mechanism. The inductive proximity detectors identify the location of the metal pieces and the processing computer instructs the sorting mechanism to place the metal and non-metallic pieces into separate containers.
Abstract:
An automated system for sorting dissimilar materials, and in particular for sorting plastics from other materials and for sorting different types of plastics from one another comprises, depending upon the embodiment, combinations of a sizing mechanism, a friction separation, an air separator, a magnetic separator, a dielectric sensor sortation bed, shaker screening, a ballistic separator, an inductive sensor sortation system and a float/sink tank. The dielectric sensor sortation system may be either analog or digital, depending upon the particular implementation. One or more float/sink tanks can be used, depending upon the embodiment, each with a media of a different specific gravity. The media may be water, or water plus a compound such as calcium chloride. In addition, multiples of the same general type of module can be used for particular configurations. A heavy media system or a sand float process can be used either alternatively or additionally.
Abstract:
Recovering metallic materials, such as copper, from waste materials. The A dynamic sensor measures the rate of change of current generated by metallic materials in the waste materials. Preprocessing and post processing of the waste materials may be completed to further concentrate the amount the metallic materials recovered from the waste.