Abstract:
There is provided a graphene production method including: forming a catalyst metal film on a surface of a substrate; heating the catalyst metal film; and cooling the heated catalyst metal film, wherein the forming a catalyst metal film includes introducing carbons into the catalyst metal film.
Abstract:
A graphene producing method which is capable of increasing a size of each domain of graphene. A plasma CVD film formation device that activates a catalyst metal layer formed on a wafer; modifies the same into an activated catalyst metal layer; decomposes a C2H4 gas as a low reactivity carbon-containing gas by plasma in a space that opposes the wafer; and decomposes a C2H2 gas as a high reactivity carbon-containing gas by heat in the space.
Abstract:
A substrate processing method includes: a carry-in step of carrying a substrate having a silicon-containing film on a surface of the substrate into a processing container; a first step of forming an adsorption layer by supplying an oxygen-containing gas into the processing container and causing the oxygen-containing gas to be adsorbed on a surface of the silicon-containing film; a second step of forming a silicon oxide layer by supplying an argon-containing gas into the processing container and causing the adsorption layer and the surface of the silicon-containing film to react with each other with plasma of the argon-containing gas; and a third step of forming a graphene film on the silicon oxide layer by supplying a carbon-containing gas into the processing container with plasma of the carbon-containing gas.
Abstract:
There is provided a film forming method of forming a carbon-containing film by a microwave plasma from a microwave source, the film forming method including: a dummy step of performing a dummy process by generating plasma of a first carbon-containing gas within a processing container; a placement step of placing a substrate on a stage within the processing container; and a film forming step of forming the carbon-containing film on the substrate using plasma of a second carbon-containing gas.
Abstract:
A method of forming a graphene structure includes providing a substrate to be processed and forming a graphene structure on a surface of the substrate to be processed through a plasma CVD using plasma of a processing gas including a carbon-containing gas and an oxidizing gas in a state in which the surface of the substrate to be processed does not have a catalytic function.
Abstract:
A graphene structure forming method for forming a graphene structure is provided. The method comprises preparing a target substrate, and forming the graphene structure on a surface of the target substrate by remote microwave plasma CVD using a carbon-containing gas as a film-forming raw material gas in a state in which the surface of the target substrate has no catalytic function.
Abstract:
A method for anisotropically etching graphene includes generating hydrogen plasma by microwave plasma, and anisotropically etching graphene by the generated hydrogen plasma.
Abstract:
A pretreatment method is performed before a graphene grows by performing a CVD method on a catalyst metal layer formed on a workpiece. The method includes a plasma treatment process in which the catalyst metal layer is activated by applying plasma of a treatment gas including a reducing gas and a nitrogen-containing gas on the catalyst metal layer.
Abstract:
A method for forming a base film of a graphene includes: forming a metal film as a base film of a graphene on a substrate by chemical vapor deposition (CVD) of an organic metal compound using a hydrogen gas and an ammonia gas; heating the substrate to a temperature at which impurities included in the formed metal film are eliminated as a gas; and heating the substrate to a temperature at which crystal grains of metal are grown in the metal film, wherein the temperature of the substrate in the heating the substrate to a temperature at which crystal grains of metal are grown in the metal film is higher than the temperature of the substrate in the heating the substrate to a temperature at which impurities included in the formed metal film are eliminated as a gas.
Abstract:
A method for forming carbon nanotubes includes preparing a target object having a surface on which one or more openings are formed, each of the openings having a catalyst metal layer on a bottom thereof; performing an oxygen plasma process on the catalyst metal layers; and activating the surfaces of the catalyst metal layers by performing a hydrogen plasma process on the metal catalyst layers subjected to the oxygen plasma process. The method further includes filling carbon nanotubes in the openings on the target object by providing an electrode member having a plurality of through holes above the target object in a processing chamber, and then growing the carbon nanotubes by plasma CVD on the activated catalyst metal layer by diffusing active species in a plasma generated above the electrode member toward the target object through the through holes while applying a DC voltage to the electrode member.