Abstract:
An apparatus for plasma processing a substrate includes a substrate holder to hold the substrate in a first portion of a vacuum chamber, and a mesh assembly segregating the first portion from a second portion of the vacuum chamber along a vertical direction, where the mesh assembly includes a vertical stack of planar meshes. The apparatus includes a mesh positioning equipment to horizontally move one of the planar meshes to adjust a vertical permeability of the stack, and a plasma generation equipment to generate plasma in the second portion of the vacuum chamber.
Abstract:
Plasma processing apparatus and methods are provided. In one example implementation, the plasma processing apparatus includes a processing chamber. The plasma processing apparatus includes a pedestal disposed in the processing chamber. The pedestal is operable to support a workpiece. The plasma processing apparatus includes a plasma chamber disposed above the processing chamber in a vertical direction. The plasma chamber includes a dielectric sidewall. The plasma processing apparatus includes a separation grid separating the processing chamber from the plasma chamber. The plasma processing apparatus includes a first plasma source proximate the dielectric sidewall. The first plasma source is operable to generate a remote plasma in the plasma chamber above the separation grid. The plasma processing apparatus includes a second plasma source. The second plasma source is operable to generate a direct plasma in the processing chamber below the separation grid.
Abstract:
The present invention has an objective to provide a processing method and an ion beam processing apparatus capable of inhibiting deposition of redeposited films even for fine patterns. In an embodiment of the present invention, ion beam processing is performed such that an etching amount of an ion beam incident in extending directions of pattern trenches formed on a substrate is made larger than the etching amount of the ion beam incident in other directions. This processing enables fine patterns to be processed while inhibiting redeposited films from being deposited on the bottom portions of the trenches of the fine patterns.
Abstract:
Etching having high selectivity is performed within a plane of a substrate. To this end, a substrate processing apparatus includes a substrate support where a substrate including a first film containing at least silicon and a second film having a silicon content ratio lower than that of the first film is placed; a process chamber wherein the substrate support is disposed; a gas supply system configured to supply an etching gas to the substrate; a coolant channel disposed in the substrate support and having a coolant flowing therein; a coolant flow rate controller configured to control a flow rate of the coolant supplied to the coolant channel; a control unit configured to control at least the coolant flow rate controller such that a temperature of the substrate is maintained whereat an etch rate of the first film is higher than that of the second film while the etching gas is in contact with the substrate; and an exhaust system configured to exhaust an inner atmosphere of the process chamber.
Abstract:
The present invention has an objective to provide a processing method and an ion beam processing apparatus capable of inhibiting deposition of redeposited films even for fine patterns. In an embodiment of the present invention, ion beam processing is performed such that an etching amount of an ion beam incident in extending directions of pattern trenches formed on a substrate is made larger than the etching amount of the ion beam incident in other directions. This processing enables fine patterns to be processed while inhibiting redeposited films from being deposited on the bottom portions of the trenches of the fine patterns.
Abstract:
Nanostructured material exhibiting a random anisotropic nanostructured surface, and exhibiting an average reflection at 60 degrees off angle less than 1 percent. The nanostructured materials are useful, for example, for optical and optoelectronic devices, displays, solar, light sensors, eye wear, camera lens, and glazing.
Abstract:
A plasma processing tool is used to deposit material on a workpiece. For example, a method for conformal deposition of material is disclosed. In this embodiment, the plasma sheath shape is modified to allow material to impact the workpiece at a range of incident angles. By varying this range of incident angles over time, a variety of different features can be deposited onto. In another embodiment, a plasma processing tool is used to etch a workpiece. In this embodiment, the plasma sheath shape is altered to allow ions to impact the workpiece at a range of incident angles. By varying this range of incident angles over time, a variety of differently shaped features can be created.
Abstract:
Methods and apparatus for etching substrates such as silicon wafers are provided. In one specific approach, a surface of the substrate assembly is covered with a resist that is patterned to define features to be etched. In this approach, the surface is then exposed to a plasma in a plasma etcher so that surface areas not covered with the resist are etched, while the thickness of the resist increases or etches at a rate that is at least ten times slower than that of the exposed areas of the surface. This etching process can be followed with a conventional plasma etch. By combining the etching that increases the resist thickness with the conventional etching of resist in which the resist thins during etching, features having high-aspect-ratios can be etched.
Abstract:
An apparatus for low-damage, anisotropic etching of substrates having the substrate mounted upon a mechanical support located within an ac or dc plasma reactor. The mechanical support is independent of the plasma reactor generating apparatus and capable of being electrically biased. The substrate is subjected to plasma of low-energy electrons and a species reactive with the substrate. An additional structure capable of being electrically biased can be placed within the plasma to control further the extraction or retardation of particles from the plasma.
Abstract:
Apparatus and methods for an improved plasma processing. A first power source alternates between high and low power cycles to produce and sustain a plasma, and a second power source alternates between high and low power cycles to accelerate ions toward the substrate being processed. Preferably, the power sources are synchronized such that the second power provides each high power cycle substantially during the time that the first power source provides each low power cycle. Commencement of each high power cycle provided by the second power source may be delayed for a period of time after each high power cycle provided by the first power source terminates. This approach allows electrons to cool off and accumulated charge on surface features of the substrate to dissipate before ions are accelerated toward the substrate for processing. The power sources may also be synchronized such that the both power sources are in a high power state during initial plasma power up to facilitate coupling power to the plasma and reduce problems associated with impedance mismatch between the plasma and the first power source.