Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate having a metal-oxide semiconductor (MOS) transistor thereon, and an oxide semiconductor transistor adjacent to the MOS transistor. Preferably, the MOS transistor includes a first gate structure and a source/drain region adjacent to two sides of the gate structure, and the oxide semiconductor transistor includes a channel layer and the top surface of the channel layer is lower than the top surface of the first gate structure of the MOS transistor.
Abstract:
The present invention provides a method of forming an integrated circuit including a substrate, a first transistor, a second transistor and a third transistor. The first transistor has a first metal gate including a first bottom barrier layer, a first work function metal layer and a first metal layer. The second transistor has a second metal gate including a second bottom barrier layer, a second work function metal layer and a second metal layer. The third transistor has a third metal gate including a third bottom barrier layer, a third work function metal layer and a third metal layer. The first transistor, the second transistor and the third transistor has the same conductive type. A nitrogen concentration of the first bottom barrier layer>a nitrogen concentration of the second bottom barrier layer>a nitrogen concentration of the third bottom barrier layer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a metal-oxide semiconductor (MOS) transistor thereon and a first interlayer dielectric (ILD) layer surrounding the MOS transistor; forming a source layer, a drain layer, a first opening between the source layer and the drain layer, and a second ILD layer on the MOS transistor and the first ILD layer, wherein the top surfaces of the source layer, the drain layer, and the second ILD layer are coplanar; forming a channel layer on the second ILD layer, the source layer, and the drain layer and into the first opening; and performing a first planarizing process to remove part of the channel layer so that the top surface of the channel layer is even with the top surfaces of the source layer and the drain layer.
Abstract:
The present invention provides an integrated circuit including a substrate, a first transistor, a second transistor and a third transistor. The first transistor has a first metal gate including a first bottom barrier layer, a first work function metal layer and a first metal layer. The second transistor has a second metal gate including a second bottom barrier layer, a second work function metal layer and a second metal layer. The third transistor has a third metal gate including a third bottom barrier layer, a third work function metal layer and a third metal layer. The first transistor, the second transistor and the third transistor has the same conductive type. A nitrogen concentration of the first bottom barrier layer>a nitrogen concentration of the second bottom barrier layer>a nitrogen concentration of the third bottom barrier layer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a gate structure on the substrate; forming a lightly doped drain in the substrate; and performing a first implantation process for implanting fluorine ions at a tiled angle into the substrate and part of the gate structure.
Abstract:
The present invention provides a method of forming a semiconductor device. First, a substrate having a first insulating layer formed thereon is provided. After forming an oxide semiconductor layer on the first insulating layer, two source/drain regions are formed on the oxide semiconductor layer. A bottom oxide layer is formed to entirely cover the source/drain regions, following by forming a high-k dielectric layer on the bottom oxide layer. Next, a thermal process is performed on the high-k dielectric layer, and a plasma treatment is performed on the high-k dielectric layer in the presence of a gas containing an oxygen element.
Abstract:
The present invention provides a semiconductor device and a method of forming the same. The semiconductor device includes a substrate, a first transistor and a second transistor. The first transistor and the second transistor are disposed on the substrate. The first transistor includes a first channel and a first work function layer. The second transistor includes a second channel and a second work function layer, where the first channel and the second channel include different dopants, and the second work function layer and the first work function layer have a same conductive type and different thicknesses.
Abstract:
The present invention provides a semiconductor structure, including a base, a patterned oxide semiconductor (OS) layer, two source/drain regions, a protective layer, a gate layer and a gate dielectric layer. The patterned OS layer is disposed on the base. Two source/drain regions are disposed on the patterned OS layer and are separated by a recess. Each source/drain region includes an inner sidewall facing the recess and an outer sidewall opposite to the inner sidewall. The protective layer is disposed on a sidewall of the patterned OS layer but is not on the inner sidewall of the source/drain region. The gate layer is disposed on the patterned OS layer, and the gate dielectric layer is disposed between the gate layer and the patterned OS layer.
Abstract:
A semiconductor device and a method of fabricating the same, the semiconductor device includes a substrate, an interconnect structure, and an oxide semiconductor structure. The substrate has a first region and a second region. The interconnect structure is disposed on the substrate, in the first region. The oxide semiconductor structure is disposed over a hydrogen blocking layer, in the second region of the substrate.
Abstract:
The present invention provides a semiconductor structure, including a base, a patterned oxide semiconductor (OS) layer, two source/drain regions, a protective layer, a gate layer and a gate dielectric layer. The patterned OS layer is disposed on the base. Two source/drain regions are disposed on the patterned OS layer and are separated by a recess. Each source/drain region includes an inner sidewall facing the recess and an outer sidewall opposite to the inner sidewall. The protective layer is disposed on a sidewall of the patterned OS layer but is not on the inner sidewall of the source/drain region. The gate layer is disposed on the patterned OS layer, and the gate dielectric layer is disposed between the gate layer and the patterned OS layer. The present invention further provides a method of forming the same.