Abstract:
As manufactured disk drive head suspension load beams are modified for facile permanent adjustment in pitch characteristic by a localized reduction in material in the load beam forward portion web and/or rails within a transverse locus to facilitate deflection of the load beam to a different pitch characteristic.
Abstract:
Disk drive suspension load beam has a unitary lift bracket formed from a deflection of the load beam distal portion laterally of the load beam into a curvilinear shape to define a cam follower adapted to engage a camming surface used to lift the load beam carried head from its normal proximity to a disk.
Abstract:
Extended arcuate travel of the flexure in a disk drive suspension head gimbal assembly is provided by reducing the load beam body thickness in the areas where the load beam body normally interferes with full arc traverse, by etching some or all of the load beam material away in the interference areas.
Abstract:
Unduly large travel of a flexure resulting in overflexure or the permanent loss of dimple contact between flexure and load beam in a disk drive suspension is blocked by having the flexure and load beam loosely coupled by a blocking structure which freely permits desired movement, within a predetermined range, but blocks other movement, by defining a gap between flexure and load beam equal to or less than the maximum tolerable amount of travel against movement beyond the predetermined range.
Abstract:
A resin free and solder free electrical connection in a disk drive suspension interconnect is provided including an electrical connection between conductive traces of a first metal layer and a second metal layer with a conductor pin having electrical connection with the outer surfaces of each metal layer and free of any solder and resin in making the connection.
Abstract:
ESD is prevented in a disk drive suspension electrical interconnect having plural pairs of conductive traces supported by an insulative film by disposing a material having a lower resistivity than the insulative film but not so low that the conductive traces are shunted. The material is disposed in or on the film and is to be connected to ground.
Abstract:
A low stiffness, high torsion disk drive suspension having reduced gram load change after backbending and method includes a laminate of a plastic film layer and a plurality of conductors in which the spring portion, the base portion and/or the distal portion are provided with contiguous discontinuities that reduce the vertical stiffness of the suspension with only a low reduction in torsion, and that limit gram load changes by preventing stretching of the plastic film that would otherwise accompany backbending of the suspension.
Abstract:
A protective mounting for a microchip on a suspension is provided by locating the microchip in an opening in the load beam extending from the edge rail side through to the slider side and attaching the microchip there to a flexible circuit conductor extending on the slider side.
Abstract:
A disk drive suspension is mounted to an actuator arm by axial and not radial forces, the forces being imparted by upper and lower flanges of a cylindrical connector extending through the actuator arm and the mount plate to which the load beam is attached.
Abstract:
A novel flexure provides an improved disk drive suspension, the flexure having a different thickness of insulative film between its metal layer and respective ones of its read and write conductor circuits to vary the circuit impedances accordingly to different and optimum values for each type of circuit.