Abstract:
A method for analyzing data from a mass spectrometer including obtaining calibrated mass spectral data involving at least one ion with its isotopes, by processing raw spectral data; obtaining library spectral data which has been processed to form calibrated library data; and performing a regression analysis, preferably using matrix operations, between the calibrated mass spectral data and the calibrated library data; and reporting at least one regression coefficient representative of a relative concentrations of a component in a sample which generated the raw spectral data. The invention is also directed to a mass spectrometer system that operates in accordance with the method, a data library of transformed mass spectra, and a method for producing the data library.
Abstract:
A method for analyzing data obtained from at least one sample in a separation system (10, 50, 60) that has a capability for separating components of a sample containing more than one component as a function of at least two different variables including obtaining data representative of the at least one sample from the system, the data being expressed as a function of the two variables; forming a data stack (70, 74, 78, 82, 84) having successive levels, each level containing successive data representative of the at least one sample; forming a data array (R) representative of a compilation of all of the data in the data stack; and separating the data array into a series of matrixes. A chemical analysis system that operates in accordance with the method, and a medium having computer readable program code for causing the system to perform the method.
Abstract:
A method for analyzing data obtained from at least one sample in a separation system (10, 50, 60) that has a capability for separating components of a sample containing more than one component as a function of at least two different variables comprising obtaining data representative of the at least one sample from the system, the data being expressed as a function of the two variables; forming a data stack (70, 74, 78, 82, 84) having successive levels, each level containing successive data representative of the at least one sample; forming a data array (R) representative of a compilation of all of the data in the data stack; and separating the data array into a series of matrixes. A chemical analysis system that operates in accordance with the method, and a medium having computer readable program code for causing the system to perform the method.
Abstract:
A method for analyzing data from a mass spectrometer comprising obtaining calibrated continuum spectral data by processing raw spectral data; obtaining library spectral data which has been processed to form calibrated library data; and performing a least squares fit, preferably using matrix operations (equation 1), between the calibrated continuum spectral data and the calibrated library data to determine concentrations of components in a sample which generated the raw spectral data. A mass spectrometer system (FIG. 1) that operates in accordance with the method, a data library of transformed mass spectra, and a method for producing the data library.
Abstract:
Standardization is achieved for FTIR spectrometric instruments that effect an intrinsic distortion in spectral information, the distortion being associated with an aperture size. An idealized function of spectral line shape is specified. With a small calibration aperture, spectral data is obtained for a basic sample having known "true" spectral data, and standard spectral data also is obtained for a standard sample. With a larger, normal sized aperture, standard spectral data is obtained again for the calibration sample. A transformation factor, that is a function of this data and the standardized function, is applied to spectral data for test samples to effect standardized information. In another embodiment, the standard sample has known true spectral data, and the basic sample is omitted. In either case, the transformation factor is applied to the sample data in logarithm form, the antilogarithm of the result effects the standardized information.
Abstract:
A method for calibrating two-dimensional responses measured on multiple instruments or on a single instrument under different operating conditions. The method calculates two separate banded diagonal transformation matrices using the responses of a common standard sample to simultaneously correct for the response channel shift and intensity variations in both dimensions or orders. The two transformational matrices are estimated from a set of simultaneous non-linear equations via the Gauss-Newton method. The effects of noise and transformation matrix bandwidth on the standardization performance were studied through computer simulation. From computer simulation and experimental data, it was found that the design of the standard sample is crucial for the parameter estimations and response standardization.
Abstract:
A computer-implemented method for detecting TCP packet losses and expediting packet retransmission is disclosed. The method includes assigning to each packet transmitted or retransmitted a sequential order number; determining from an ACK packet or SACK segment thereof the sequential order number of a received packet; recording the determined sequential order number as a highest order number in case the determined sequential order number is greater than a current received order number, and retransmitting all unacknowledged packets having sequential order numbers less than the highest received order number.
Abstract:
In a luminescence detecting apparatus and method for analyzing luminescent samples, luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, an infrared filter, and a camera lens, whereupon a focused image is created by the optics on the camera. The use of an infrared filter suppresses stray IR radiation resulting from plate phosphorescence (which can result in abnormally high backgrounds and/or alteration of the image received by the camera).
Abstract:
In a spectroscopic process a sample for producing a test spectral line or spectrum of at least one component contained in the sample is stimulated and the transmitted and/or emitted electromagnetic rays are used to create the test spectral line or spectrum. In order to improve such a spectroscopic process to such an extent that variations of certain parameters, which alter the shape and/or occurrence of a spectral line, are compensated, a comparison spectral line or spectrum of a known comparison material is produced under substantially the same parameters as the sample. The comparison spectral line or spectrum is compared with an ideal comparison spectral line or spectrum in order to calculate a transfer function, andthe transfer function is applied to the test spectral line or spectrum in order to calculate a corrected test spectral line or spectrum.
Abstract:
A multi-dimensional separation system having parallel traps for effluent from prior separation dimension and parallel latter separation columns, the latter columns being coupled to the traps. At least one trap enriches components of effluent while at least one other trap is releasing trapped components to a detector, which may be a mass spectrometer. Internal standards may be provided, as in a release solvent, for the calibration of one of the chromatographic columns and the detection system. The system may comprise a multiple channel selector for multiple streams, wherein all of the streams flow at the same time.