Abstract:
A water treatment dispensing apparatus has a container for holding water from a water supply and a water disinfectant cartridge located within the container. A housing attached to the container and connected to the cartridge directs water from the cartridge to a remote location, such as a dental instrument. An air pressure device supplies water under pressure to the container to force water to flow through the cartridge and to the remote location.
Abstract:
What is provided is a water filter assembly comprising a filter cartridge. The filter cartridge comprises a filter head comprising an inlet port; an outlet port; and a filter key integrally formed on the filter head between the inlet port and the outlet port. The filter key consists of exactly one laterally extending finger that is integrally formed on the filter key. The filter key is integral with the filter head as a one piece construction to form a more water-tight seal on the filter cartridge and help prevent the filter key from being separated from the filter cartridge. The finger may have a substantially polygon-shaped cross-section to more efficiently and quickly interlock the filter key with components on a filter receiver. As a result, the filter cartridge may be readily attached to and removed from the filter, while being securely enough engaged to avoid unwanted uncoupling.
Abstract:
A filter unit includes a body portion having a proximal end and a distal end. An engagement protrusion extends from the proximal end. The engagement protrusion includes a first portion that has a first radius of curvature and a second portion opposing the first portion that has a second radius of curvature that is larger than the first radius of curvature. A protruding retention surface is disposed on and extends radially outward from the body portion. The protruding retention surface is adapted to secure the filter unit in a filter head assembly.
Abstract:
A modular water filtration system including a first filter manifold and a second filter manifold is provided. The first filter manifold includes a first bracket and a first pair of arm members horizontally extending from the first bracket. One of the first pair of arm members includes a protrusion defining a bore. The second filter manifold includes a second bracket and a second pair of arm members horizontally extending from the second bracket. One of the second pair of arm members includes a duct, and the duct is configured to receive the protrusion of the first filter manifold to provide fluid communication through the bore between the first filter manifold and the second filter manifold.
Abstract:
A water filtration system that includes a filter manifold having a rotatable cover is provided. A filter cartridge is provided that includes a sump having a filter head integrally secured to a first end and cap releasably secured to a second end. A locking mechanism extending from the cover locks into the filter manifold to position the cartridge in an “in-use” state. The filter cartridge further includes two offset cylindrical inlet and outlet members protruding from the filter head that are designed to engage corresponding inlet and outlets of the filter manifold through a horizontal engagement mechanism. A check valve is positioned within the filter manifold adjacent the inlet of the filter cartridge to control fluid flow through the water filtration system. The filter cartridge head includes fins upwardly extending therefrom that are configured to engage corresponding slots formed in a plurality of corrugated channels of the filter manifold.
Abstract:
A water purifying apparatus including a head having a water inlet portion and a water outlet portion; a shaft provided in the head and rotatably mounted between the water inlet portion and the water outlet portion; a bypass flow path passing through a circumference of the shaft, and communicating the water inlet portion with the water outlet portion according to rotation of the shaft; a filter detachably mounted to the head, and having a filter inserting portion in which the shaft is inserted when being mounted on the head; and a filtering flow path in which an inlet port and an outlet port are formed on the circumference of the shaft in a direction intersecting the bypass flow path, and communicated between the filter, the water inlet portion and the water outlet portion with each other according to the rotation of the shaft.
Abstract:
A filter cartridge including an improved endplate configured to enable a user to remove the filter cartridge from a shell without the use of external tools. The filter cartridge includes a filter media, a first endplate coupled to a first end of the filter media, and a second endplate coupled to a second end of the filter media. The second endplate includes at least one tab formed therein along an outer peripheral surface thereof. Each tab defines a pocket formed therein, via which the user may grasp the endplate and thereby remove the filter cartridge from the shell by hand.
Abstract:
A filter for hydraulic fluids including a container defining inside a housing compartment fluidically communicating with an inlet and an outlet associated with and a filtering cartridge, and partitioning the compartment in first and second chambers. The cartridge is configured and positioned for determining the filtering of the hydraulic fluid from the inlet which flows from the first to the second chambers. The container exhibits an engagement portion projecting inside the housing compartment and defining a collar having an outer coupling lateral surface, while the filtering cartridge exhibits a respective engagement portion defining a respective collar exhibiting an inner coupling lateral surface configured for engaging outside the outer coupling surface of the container. The coupling surface of the engagement portion of the container exhibits a polygonal cross-section; the inner coupling surface of the engagement portion of the cartridge is at least partially countershaped to the coupling surface of the container.
Abstract:
A filter and its holder each have a keyed surface, one being a protruding “key” and one being a recessed “lock,” wherein cooperation of these keyed surfaces is required in order for the filter to be installed in the holder. Modification/adaptation of the keyed surfaces, by changing the location, number and length of the key protrusions and cooperating recesses during manufacture, allows various sets of mating filters and holders to be produced so that only mating/matching filters and holders may be connected together. The keyed protrusions are preferably located on an upper shoulder or on protruding flange(s) of the upper end of the filter. The cooperating recess structure inside the filter holder comprises axial recesses that allow axial insertion of the key protrusions, and hence the filter, into the holder and also a circumferential recesses portion that receives multiple key protrusions to retain the filter in the holder. This way, multiple key protrusions slide into and are retained in a single circumferential recess/slot, rather than each key protrusion being received in its own separate circumferential recess/slot.
Abstract:
The subject matter of this specification can be embodied in, among other things, a filter replacement kit that includes a filter cartridge. The filter cartridge includes a filter body, a filter media disposed within the filter body, a neck portion having a fluid inlet and a fluid outlet, and a cartridge engagement mechanism on the neck portion for engaging a manifold assembly. The cartridge engagement mechanism includes at least one filter engagement surface. The filter replacement kit also includes compatibility indicia indicating that the filter cartridge is compatible with at least one appliance. The at least one appliance includes the manifold assembly including a manifold engagement mechanism having a manifold engagement surface with first and second horizontal portions, and an angled portion disposed between and joining the first horizontal portion to the second horizontal portion, wherein the filter engagement surface is non-congruent to the manifold engagement surface.