Abstract:
In a hydrogen generating apparatus, in a reactor in which a catalyst is installed, the catalyst and borohydride fuel are reacted, hydrogen generates. The hydrogen generating apparatus comprises a rotating disk to which the catalyst is fixed, a motor for rotating the rotating disk, and a fuel injecting means for blowing out the borohydride fuel against the catalyst. A half-solid shape reactive compound generated from the borohydride is prevented from adhering to the catalyst.
Abstract:
A reactor including a rotatable disc (3) having a region (13) in an upper surface (5) thereof. Reactant (15) is supplied to the region (13) by way of a feed (4), the disc (3) is rotated at high speed, and the reactant (15) moves from the region (13) so as to form a film (17) on the surface (5). As the reactant (15) traverses the surface (5) of the disc (3), it undergoes chemical or physical processes before being thrown from the periphery of the disc (3) into collector means (7).
Abstract:
A hydrogen generating system regulates its rate of hydrogen generation by monitoring one or more parameters of the hydrogen generation process and then providing relative movement between the fuel tank and the catalyst chamber so as to increase or decrease the rate of hydrogen generation.In the disclosed embodiments, the catalyst chamber is disposed in a tank containing the fuel. The relative movement provided moves the catalyst chamber toward the fuel solution so as to increase the rate of hydrogen generation and moves the catalyst chamber away from the fuel solution to decrease such generation. Advantageously, such self-regulation can be provided without an external power source and can be varied to meet the requirements of different commercial applications. The overall system can be readily fabricated using commercially available parts.
Abstract:
Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light.
Abstract:
A novel fixed-bed catalyst structure obtained using honeycomb elements, for highly exothermic and endothermic chemical reactions, wherein the required heat exchange, both in the liquid phase and in the gas phase, is forcibly effected in the fixed catalyst bed by means of static mixing elements made of inert ceramic and/or metallic material or completely of catalyst material, between the individual honeycomb elements.
Abstract:
Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.
Abstract:
Individual high area contactors suitable for filling a rotary biological contactor and for packing a fluid column or tower are disclosed. According to this invention each of the individual contactors include a tough abrasive-resistant outer member such as perforated substantially spherical members, or cylindrical shaped outer members such as Raschig rings. This tough outer member encloses or protects a more fragile high-area internal member or reaction support member. In a preferred embodiment such as for high temperature uses or uses where the contactor would be exposed to the ultraviolet rays of the sun, the outer member is preferably made of abrasive resistant ceramic and the high-area internal member is a ceramic sponge. In certain embodiments, the outer member can be made with a rather thin shell and still maintain its strength by the use of internal ceramic sponge shaped to provide support to the outer shell. In addition to ceramic, and for other uses, both the outer member and the high area internal member can be made of plastic like material. In other embodiments, the internal member can be made of carrageenan and resin, while in still others it may be ceramic sponge coated with a metal or other selected material. The selection of materials is dependent upon the use to be made of the contactor and the type of enzyme, reaction, etc., that is to be supported by the high-area internal members.
Abstract:
A novel reactor for enzymatic reactions comprises a flow cell which is constituted by two semi-blocks having a planar surface. The enzyme is immobilized on one of the semi-blocks while a thin channel is provided on the face of the other semi-block. The two semi-blocks are hermetically closed. The substrate solution follows a tangential motion and travels with a laminar flow. The reactor permits to achieve 90% contact with the enzyme and may be used continuously.
Abstract:
The invention provides a continuous process for the preparation of ethylene glycol and 1, 2-propylene glycol from starting material comprising one or more saccharides, said process being carried out in a reactor system comprising a reactor vessel equipped with an external recycle loop and said process comprising the steps of: i) providing the starting material in a solvent, via an inlet, to the external recycle loop and contacting it therein with a retro-aldol catalyst composition to provide an intermediate stream; ii) then contacting said intermediate stream with hydrogen in the presence of a hydrogenation catalyst composition in the reactor vessel; iii) withdrawing a product stream comprising glycols from the reactor vessel; iv) providing a portion of said product stream, via an outlet, for separation and purification of the glycols contained therein; and v) recycling the remainder of said product stream via the external recycle loop.
Abstract:
PFRs for running multiphasic processes are disclosed. The PFRs are single or multi-chamber devices having at least three types of regions (a liquid-contacting region, a gas-contacting region and a Ssquid-coSection region), and a porous substrate providing fluid communication at least between the liquid-contacting and gas-contacting regions. Removal of liquid from the porous substrate, such as by collecting the liquid as it flows off the bottom of the porous substrate in the Siquid-coSSection region or such as by evaporation of the liquid from the porous substrate in the evaporation region supports a continuous flow process. Methods of using the PFRs are also disclosed, for example methods of using the PFRs as photobioreactors for cultivating photosynthetic microorganisms, for producing fermentable sugars, for producing ethanol, for fermenting synthesis gas and producing single cell protein from natural gas.