Abstract:
An anti-submarine warfare system includes an unmanned “sea-sitting” aircraft housing submarine detecting equipment, the aircraft including a body portion having a catamaran configuration adapted for stably supporting the body portion when sitting in water, the body portion including a fuselage and laterally disposed sponsons connected to the fuselage via platforms, and submarine detecting equipment housed within the fuselage and adapted to be electronically linked to sonobuoys disposed in adjacent water locations.
Abstract:
An air vehicle defining a plane of symmetry includes a pair of outboard panels which are rotatably mounted on the lifting body of the vehicle and respectively extend in opposite directions from the plane of symmetry. A control system collectively rotates the outboard panels to selectively contribute forces from the panels to the lift on the air vehicle. The control system also differentially rotates the outboard panels to control roll of the air vehicle. A pair of empennage panels are also rotatably mounted on the lifting body to establish a dihedral angle centered on the plane of symmetry. The control system collectively rotates these empennage panels to control pitch, and differentially rotates the empennage panels to control yaw, of the air vehicle. In a high speed flight regime the lifting body alone is sufficient and the outboard panels are collectively rotated to reduce drag and contribute substantially zero lift. In a slow speed flight regime, the outboard panels are collectively rotated to contribute to the lift on the air vehicle.
Abstract:
A rotor assembly for an aircraft operable to generate a variable thrust output at a constant rotational speed. The rotor assembly includes a mast rotatable at the constant speed about a mast axis. A rotor hub is coupled to and rotatable with the mast. The rotor hub includes a plurality of spindle grips extending generally radially outwardly. Each of the spindle grips is coupled to one of a plurality of rotor blades and is operable to rotate therewith about a pitch change axis. A collective pitch control mechanism is coupled to and rotatable with the rotor hub. The collective pitch control mechanism is operably associated with each spindle grip such that actuation of the collective pitch control mechanism rotates each spindle grip about the respective pitch change axis to collectively control the pitch of the rotor blades, thereby generating the variable thrust output.
Abstract:
An unmanned aircraft includes a propulsion system having a diesel or kerosene internal combustion engine and a charger device for engine charging. The propulsion system can be a hybrid propulsion system or a parallel hybrid propulsion system.
Abstract:
A method for controlling an unmanned aerial vehicle (UAV) is provided. The UAV comprises at least one rotor. The method includes receiving a take-off signal; initiating the at least one rotor to operate with a first preset rotation acceleration in response to the take-off signal; detecting a take-off status information of the UAV, the take-off status information at least comprising a current height of the UAV; determining whether the detected current height of the UAV is equal to or greater than a threshold; and sending a hover signal to the at least one rotor to enable the UAV to hover in the current height in response to the determination that the detected current height of the UAV is equal to or greater than the threshold.
Abstract:
A method for controlling an unmanned aerial vehicle (UAV) is provided. The UAV comprises at least one rotor. The method includes receiving a take-off signal; initiating the at least one rotor to operate with a first preset rotation acceleration in response to the take-off signal; detecting a take-off status information of the UAV, the take-off status information at least comprising a current height of the UAV; determining whether the detected current height of the UAV is equal to or greater than a threshold; and sending a hover signal to the at least one rotor to enable the UAV to hover in the current height in response to the determination that the detected current height of the UAV is equal to or greater than the threshold.
Abstract:
One example includes a dual-aircraft system. The system includes a glider aircraft configured to perform at least one mission objective in a gliding-flight mode during a mission objective stage. The system also includes an unmanned singlecopter configured to couple to the glider aircraft via a mechanical linkage to provide propulsion for the glider aircraft during a takeoff and delivery stage. The unmanned singlecopter can be further configured to decouple from the glider aircraft during a detach stage in response to achieving at least one of a predetermined altitude and a predetermined geographic location to provide the gliding-flight mode associated with the glider aircraft, such that the glider aircraft subsequently enters the mission objective stage.
Abstract:
An unmanned aircraft includes a propulsion system having a diesel or kerosene internal combustion engine and a charger device for engine charging. The propulsion system can be a hybrid propulsion system or a parallel hybrid propulsion system.
Abstract:
An aerial micro-drone having a fixed wing supporting a propulsion device. The micro-drone has wheels for traveling on the ground, which are attached to the side ends of a section of the wing. The rotational axis Y1 of the wheels is located in front of the center of gravity of the micro-drone. The center of gravity of the micro-drone is located in front of the aerodynamic center of the micro-drone. The rotational axis Y1 of the wheels being aligned with the thrust axis of the propulsion device and the wheels are sized such that the radius D/2 thereof is greater than the distance between the rotational axis Y1 of the wheels and the trailing edge of the wing.
Abstract:
A control system configured to control an acceleration of an air vehicle which comprises a tiltable propulsion unit that is tiltable to provide a thrust whose direction is variable at least between a general vertical thrust vector direction and a general longitudinal thrust vector direction with respect to the air vehicle, the control system comprising: (a) an input interface for receiving information indicative of a monitored airspeed of the air vehicle; and (b) a control unit, configured to issue controlling commands to a controller of the tiltable propulsion unit for controlling the acceleration of the air vehicle.