Abstract:
A device for transporting two or more articles to two or more locations comprising: one or more holding units for carrying the two or more articles one or more orifices for loading and/or delivering the articles a controlling unit for directing the movement and operations of the device a flying attachment for transporting the device through air
Abstract:
In one embodiment, a wing for an unmanned aerial vehicle is described. The unmanned aerial vehicle includes a first body of the wing with a first end proximate a body of the vehicle. A second end is opposite the first end. A first joint is on the first end of the first main body of the wing. The joint rotatably couples the wing to the vehicle. A second joint is on the second end of the vehicle. A second body of the wing is rotatably coupled to the first body via the second joint.
Abstract:
A disposable unmanned aerial glider (UAG) with pre-determined UAG flight capabilities. The UAG comprises a flight module comprising at least one aerodynamic arrangement; and a fuselage module comprising a container configured for storing therein a payload and having structural integrity. The container is pressurized so as to maintain structural integrity thereof at least during flight, so that the UAG flight capabilities are provided only when the container is pressurized.
Abstract:
Stowable and deployable unmanned aerial vehicles (UAVs), and associated systems and methods are disclosed. A UAV in accordance with a particular embodiment includes a main body, frames carried by the main body, and motors carried by the frames. At least two frames are positioned to move relative to each other between a stowed configuration in which the frames are generally aligned proximate to each other and a deployed configuration different from the stowed configuration. The main body can include a first body portion pivotably connected to a second body portion. In a stowed configuration, the body portions can generally overlap each other. A UAV in accordance with particular embodiments includes a modular electronics unit carried by the UAV and including a camera, a battery, and a vehicle controller. Modular electronics units can be configured to be removably connected to and disconnected from the UAV and other vehicles.
Abstract:
The present disclosure provides various embodiments of a multicopter-assisted launch and retrieval system generally including: (1) a multi-rotor modular multicopter attachable to (and detachable from) a fixed-wing aircraft to facilitate launch of the fixed-wing aircraft into wing-borne flight; (2) a storage and launch system usable to store the modular multicopter and to facilitate launch of the fixed-wing aircraft into wing-borne flight; and (3) an anchor system usable (along with the multicopter and a flexible capture member) to retrieve the fixed-wing aircraft from wing-borne flight.
Abstract:
A base module may be used to receive and house one or more unmanned aerial vehicles (UAVs) via one or more cavities. The base module receives commands from a manager device and identifies a flight plan that allows a UAV to execute the received commands. The base module transfers the flight plan to the UAV and frees the UAV. Once the UAV returns, the base module once again receives it. The base module then receives sensor data from the UAV from one or more sensors onboard the UAV, and optionally receives additional information describing its flight and identifying success or failure of the flight plan. The base module transmits the sensor data and optionally the additional information to a storage medium locally or remotely accessible by the manager device.
Abstract:
An airborne drone launch and recovery apparatus for selectively launching drones located on the underside of a carrier aircraft or recovering drones following flight of the drones, the airborne launch and recovery apparatus has an extensible stinger slidable along the length of a stinger sheath between a retracted position proximal the rear portion of the carrier aircraft and an extended position in front of the carrier aircraft, and a catcher shuttle carried on the forward part of the stinger for extending into the non-turbulent air in front of the carrier aircraft when the stinger is in the extended position. The carrier shuttle includes a launch/recovery assembly for selectively either having a locked condition for the recovery guide of a drone prior to the positioning of the catcher shuttle in a selected for the launch of the drone, and having an open condition for receiving the recovery guide of a drone at the termination of the flight of the drone to terminate the flight.
Abstract:
This disclosure describes a power unmanned aerial vehicle (UAV) that may generate a current from a magnetic field of an overhead power line. In various implementations, while the power UAV is flying, the power UAV may receive another UAV at a platform. A control element of the power UAV may generate signals to cause the power UAV to fly to a location of a conductor of the power line. The control element may also determine a position of the secondary coil with respect to the power line and generate control signals to adjust the position of the secondary coil based on the determined position of the secondary coil, a determined safety distance, and/or a determined threshold distance for efficient current generation. A shielding substrate may also be provided to shield electronics of the power UAV or other UAVs from magnetic fields.
Abstract:
A vehicle-based airborne wind turbine system having an aerial wing, a plurality of rotors each having a plurality of rotatable blades positioned on the aerial wing, an electrically conductive tether secured to the aerial wing and secured to a ground station positioned on a vehicle, wherein the aerial wing is adapted to receive electrical power from the vehicle that is delivered to the aerial wing through the electrically conductive tether; wherein the aerial wing is adapted to operate in a flying mode to harness wind energy to provide a first pulling force through the tether to pull the vehicle; and wherein the aerial wing is also adapted to operate in a powered flying mode wherein the rotors may be powered so that the turbine blades serve as thrust-generating propellers to provide a second pulling force through the tether to pull the vehicle.
Abstract:
An airborne drone delivery network and method of operating same that provides an effective system to deliver items to a set number of delivery locations using drones in which the drone flight path is minimized and wherein the drones may be easily retrieved and reused for delivery of additional items.