Abstract:
A plurality of express shuttle elevators S1-S4 exchange elevator cabs at a transfer floor 26 with local elevators L1-L10 by means of a carriage 107, the casters of which 93 are guided by tracks 70-83. The transfer floor has linear induction motor (LIM) primary segments 60-67 disposed on the transfer floor; the carriage has a LIM secondary 128 thereon for propulsion. The carriages can be locked 91, 92 to the transfer floor for loading, and cabs can be locked 131 onto the carriages for stability when being moved. A controller (FIGS. 10-13) keeps track of the progress of the cabs from one elevator to another.
Abstract:
In a group of elevators with double cars, the assignment of such double cars to floor calls takes place at scanner positions .alpha. in two procedural steps, according to two parameters: primarily by assignment of the individual cars of all double cars by logical decision, according to a criteria chain (KK), and subsidiarily by assignment of the double cars according to the minimal loss time of all involved passengers. The individual elevators each have a microcomputer system with a calculating device and are connected with each other by way of a comparator circuit to form a group control. The optimal individual cars are assigned for each elevator by floor in the associated individual car/call assignment memories. The optimal double car is selected by comparison of the loss times of all elevators calculated as the total operating costs K.sub.g (.alpha.) and is assigned to the respective floor in the associated double car/call assignment memory. For the total servicing costs K.sub.g (.alpha.), a special cost calculating algorithm is provided. With the separate assignment of individual cars and double cars, this group control renders possible a complete utilization of the double car functions as well as a good matching to different operating and traffic conditions. At the same time, the minimal waiting time of the passengers is optimized.
Abstract:
An elevator control receives car calls for certain floors which are subject to a restriction of operation, but does not prevent the storage of these car calls. The car calls subject to the restriction of operation are only served during the trip in the opposite direction, if a load increase has been detected by a load measurement device during the change in the direction of travel. The restriction of operation is only cancelled during a predetermined time interval dependent on the movement of the car door and simultaneous occurrence of a load change caused by added travelers. Two storage cells are connected to the car call circuits for the car calls subject to the restriction of operation where an entered call, during a cancelled restriction of operation, is stored in the first storage cell and, during the restriction of operation, is stored in the second storage cell. A call stored in the first storage cell is transferred to the travel control of the elevator prior to the change of direction of travel and a call stored in the second storage cell is only transferred after the change of direction of the elevator.
Abstract:
Elevator system passengers are transported in one or more of a plurality of elevator cars. The elevator cars can require different amounts of energy to operate. Passenger trips can be allocated to one car or another car based on the expected energy consumption for the trips in one or the other car.
Abstract:
Embodiments are directed to detecting motion of a building housing a multi-deck elevator system, determining, by a processing device, that the detected motion of the building is greater than a threshold, and controlling access to at least one deck of the elevator system based on determining that the detected motion of the building is greater than the threshold such that the at least one deck still is enabled to traverse a hoist-way of the elevator system.
Abstract:
Embodiments are directed to detecting motion of a building housing a multi-deck elevator system, determining, by a processing device, that the detected motion of the building is greater than a threshold, and controlling access to at least one deck of the elevator system based on determining that the detected motion of the building is greater than the threshold such that the at least one deck still is enabled to traverse a hoist-way of the elevator system.
Abstract:
The invention concerns a method for a passenger-allocation in a multi-deck elevator group, the decks of which defining elevator cars, respectively, being stacked above each other and being mounted in a car frame to be moved synchronously in an elevator shaft. The method being performed by a control unit to dispatch the elevator cars for serving any passenger call which can be entered as a landing call or a car call, wherein a call can create a number of allocation proposals calculated by means of an optimization algorithm carried out by the control unit for dispatching an elevator to a passenger call. The invention is characterized in that said allocation proposals are then processed in a routing algorithm defining one serving deck to be taken for the allocation of a specific call, which routing algorithm is restarted either for any further incoming call independent of whether said further incoming call is creating new elevator allocation proposal(s) or when a reallocation timeout has passed. The invention further relates to a computer program carrying out the inventive method.
Abstract:
An elevator system having a double or multiple elevator cabins per elevator shaft can be controlled using a method, wherein at least one destination call is entered or at least one identification code is received on at least one call entry floor, said destination call or identification code designating an arrival floor; wherein at least one trip by at least one elevator cabin of the double or multiple elevator cabin from a departure floor to an arrival floor is determined for the destination call or identification code; wherein before determining a trip, it is determined whether at least one situation-specific parameter is fulfilled; and if said situation-specific parameter is fulfilled, at least one situation-compatible call assignment is determined for a trip having a floor difference of zero between the call entry floor and the departure floor or having a floor difference of zero between the destination floor and the arrival floor.
Abstract:
Elevator system passengers are transported in one or more of a plurality of elevator cars. The elevator cars can require different amounts of energy to operate. Passenger trips can be allocated to one car or another car based on the expected energy consumption for the trips in one or the other car.
Abstract:
An elevator system includes at least one elevator, at least one call input device and a call controller. The call input device transmits a call to the call controller. For a transmitted normal operation signal, at least one elevator car of an assigned elevator is activated to drive to the call input floor by at least one elevator controller of the assigned elevator. In a peak-time mode of the elevator system, at least one main operation signal is transmitted to at least one elevator. For a main operation signal transmitted to an elevator, at least one elevator car of said elevator is activated to drive between at least two main operation floors by at least one elevator controller of said elevator.