Abstract:
The present invention relates to MEM switches. More specifically, the present invention relates to a system and method for making MEM switches having a common ground plane. One method for making MEM switches includes: patterning a common ground plane layer on a substrate; forming a dielectric layer on the common ground plane layer; depositing a DC electrode region through the dielectric layer to contact the common ground plane layer; and depositing a conducting layer on the DC electrode region so that regions of the conducting layer contact the DC electrode region, so that the common ground plane layer provides a common ground for the regions of the conducting layer
Abstract:
A method for depositing material on a channel plate such that the material is registered to one or more channels formed in the channel plate includes filling at least one of the channels with a resist that is not wetted by the material; depositing the material on at least a region of the channel plate that includes at least part of the resist; and then removing the resist. The method may be used, in one embodiment, to apply an adhesive or gasket material that is used in assembling a switch.
Abstract:
A method for depositing material on a channel plate such that the material is registered to one or more channels formed in the channel plate includes filling at least one of the channels with a resist that is not wetted by the material; depositing the material on at least a region of the channel plate that includes at least part of the resist; and then removing the resist. The method may be used, in one embodiment, to apply an adhesive or gasket material that is used in assembling a switch.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both metal material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
A process for the manufacture of semiconductor devices comprising the chemical-mechanical polishing of a substrate or layer containing at least one III-V material in the presence of a chemical-mechanical polishing composition (Q1) comprising (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) at least one amphiphilic non-ionic surfactant having (b1) at least one hydrophobic group; and (b2) at least one hydrophilic group selected from the group consisting of polyoxyalkylene groups comprising (b22) oxyalkylene monomer units other than oxyethylene monomer units; and (M) an aqueous medium.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
A method (60) entails providing a substrate (34) with a structural layer (30) having a thickness (40). A partial etch process is performed at locations (82) on the structural layer (30) so that a portion (92) of the structural layer (30) remains at the locations (82). An oxidation process is performed at the locations which consumes the remaining portion of the structural layer and forms an oxide (36) having a thickness (42) that is similar to the thickness (40) of the structural layer (30). The oxide (36) electrically isolates microstructures (28) in the structural layer (30), thus producing a structure (22). A device substrate (120) is coupled to the structure (22) such that a cavity (48) is formed between them. An active region (44) is formed in the device substrate (120). A short etch process can be performed to expose the microstructures from an overlying oxide layer (110).