Abstract:
The present invention provides an apparatus and method for accomplishing fluid disinfection by passing fluid flow through a uniform array of ultraviolet lamps having cross sections perpendicular to the direction of fluid flow that define channels for the fluid flow. Positioned next to the end of each lamp at the entrance of the fluid flow are triangular shaped delta wings having surfaces inclined at an angle to the direction of fluid flow. The interaction of the fluid flow with each delta wing creates a pair of vortices that rotate in the same direction or in directions opposed to each other. The counter-rotating vortices reinforce each other to minimize dissipation of their mixing strength as they move down the channel. Due to these co-reinforcing properties these counter-rotating vortices more promote efficient mixing of the fluid which is required to achieve more efficient use of the light in the UV disinfection systems, along with heat and/or mass transfer in chemical reactions. Although the present invention is described in particularity as embodied in a UV reactor system, it will be understood by those skilled in the art that the present invention has equal applicability to other types of arrayed flow systems in which increased fluid mixing is desired.
Abstract:
A fluid treatment system includes one or more radiation sources arranged in an irradiation zone with a treatment zone through which fluid to be treated passes and is irradiated. The radiation zone has a closed cross section to maintain the fluid within a predetermined maximum distance form he radiation source. Preferably, the irradiation zone comprises a reduced cross-sectional area perpendicular to the direction of fluid flow and thus the fluid flow velocity is increased through the irradiation zone.
Abstract:
A reactor assembly is provided for destroying contaminants in fluids by the application of UV radiation to promote the destruction of the contaminants. The reactor assembly has a vertically orientated reactor chamber with a centrally located lamp emitting UV radiation and operating at temperatures in excess of 700.degree. C. A protective sheath transparent to the UV radiation encloses the lamp and isolates the lamp from reactor interior to define thereby an annular reactor space through which fluids to be treated flow. The fluids flowing through the annular reactor space and along the sheath effect a cooling of the sheath due to lamp heating. The lamp has a terminal portion at each end thereof. Each terminal portion has a temperature sensitive component. The lamp is of a sufficient length to extend the terminals beyond the end portions of the reactor which has a length equal to or greater than the arc length of the lamp. Cooling air is directed on to each of the upper and lower terminals of the lamp to cool the temperature sensitive portions thereby preventing deterioration of each lamp end due to excessive heating. In directing cooling air onto the lower terminal a pressure is developed which is greater than the pressure at the upper end of the sheath so that a control constant flow of cooling air is assured upwardly of the sheath and over the lamp. This constant flow of cooling air is assured upwardly over the sheath and over the lamp. This constant flow of cooling air is controlled to permit the lamp to operate at optimum operating temperatures to provide the necessary output of UV radiation to promote the destruction of the contaminants in the fluids.
Abstract:
A high intensity, high temperature UV Lamp reactor system for treating fluid on a continuous flow basis is provided. The reactor system comprises:a cylindrical reactor vessel, having inlets and outlets which permit the fluid to flow on a continuous basis through the reactor,a cylindrical UV lamp provided in the vessel and concentric therewith,a cylindrical UV transparent sheath for isolating the UV lamp from the interior space of the reactor vessel, the sheath and lamp being concentric with the cylindrical vessel, the sheath being sealed to the ends of the vessel to isolate the UV lamp from the fluid flowing through the annular reactor chamber,a brush device is provided for brushing the exterior surface of the sheath to remove therefrom materials deposited from the fluid, the brush having at least two brushes with bristles extending radially inwardly towards the sheath as the brushes encompass the sheath,the brushes are coupled together in spaced apart manner on the sheath with a device for reciprocating the brushes along the sheath exterior, preferably on a periodic basis to remove any deposited material from the sheath and thereby maintain an acceptable level of UV radiation transmitted into the annular chamber of the reactor.
Abstract:
In an oxidation chamber for treating wastewater, an ultraviolet lamp is mounted inside a quartz tube that is surrounded by the wastewater in the oxidation chamber. During operation, the quartz tube becomes quite hot and becomes coated with a film of slime that reduces transmission of the ultraviolet radiation into the wastewater. This results in gradually decreasing efficiency of operation until its becomes necessary to interrupt the operation of the chamber and to remove the quartz tube so that it can be cleaned to restore the transmission.In accordance with the present invention it has been found advantageous to apply a thin layer of fluoroethylene propylene (FEP) to the outer surface of the quartz tube. It has been found that the FEP layer is less suspectible to the deposition of slime than is the unprotected quartz tube, and that the slime is more easily removed from the FEP layer than from an unprotected quartz tube. Further, the FEP layer strengthens the quartz tube and protects it from localized stresses and damage caused by impact. This protective effect makes it possible to use quartz tubes having thinner walls, and that increases the transmission of the ultraviolet radiation through the quartz wall. The FEP layer also reduces handling damage to the quartz tube and protects the maintenance workers from injury.
Abstract:
An improved radiation-emitting device of the type for containing gas and an electron flow therein between electrodes. Inner and outer tubular members form an elongated annular envelope volume. The inner tube is radiation-transmissive and the outer tube is preferably radiation-reflective, preferably having metallic inner coating. Fluid passing through the inner tube is irradiated.
Abstract:
A method and apparatus for continuously purifying a fluid by the emission of ultraviolet rays characterized by a body with a series of spaced, parallel, elongated, cylindrical radiation chambers extending therethrough, and a plurality of elongated, interconnecting chambers having a height substantially less than the diameter of the radiation chambers, a plurality of elongated, ultraviolet ray emitting lamps removably mounted in jackets in the radiation chambers, respectively, and extending from the front to the rear of the radiation chambers. Fluid to be purified is continuously received in an elongated chamber and spread into sheet-like flow attitude and thence passed serially and transversely between the lamp jackets and the walls of the radiation chambers, the walls being in close proximity to the jackets to maintain sheet-like flow for a substantial distance around the periphery of the lamps, and the fluid is maintained in sheet-like flow between adjacent radiation chambers by passing through the interconnecting chambers, and thence the purified liquid is discharged from the last of the radiation chambers.
Abstract:
System for the purification and/or sterilizing of liquids by the application of ultraviolet (U-V) ray-emission means. The system includes a monitor for measuring the output of the ultraviolet source and at preset intervals activates various devices for rendering the system fail-safe.
Abstract:
A disinfection apparatus and method is provided for disinfecting a fluid. The apparatus elements define three internal container volumes. Fluid is introduced into an entry volume where its flow is conditioned to reduce splash and slow the fluid flow. The fluid is then channeled into a disinfection volume where a disinfection unit delivers a disinfection agent to the fluid. Finally, the fluid exits the apparatus through an exit volume. In one aspect, a sink-trap is disclosed in which wastewater liquid contacts a pair of diverters. The diverters have conditioned contact surfaces that slows and spreads the liquid flow and reduces liquid splash. The wastewater then passes through a UV chamber in which it is disinfected. The liquid then exits the sink-trap. Advanced self-cleaning apparatus are additionally disclosed to clean and disinfect the sink-trap and trapped wastewater. The entire apparatus operates under computer control.
Abstract:
A fluid sterilization device includes: a flow passage tube in which a processing passage where a passing fluid is sterilized is formed; an inflow passage or an outflow passage formed in the flow passage tube; a light source that irradiates the processing passage with ultraviolet light; and a rotating body provided in the processing passage. The rotating body is rotated around a longitudinal direction of the processing passage in response to a flow of the fluid passing through the processing passage and is configured to come into contact with an inner wall of the flow passage tube during rotation.