Abstract:
A fusion splice including a first optical fiber having a first MFD and a first MFD expansion rate. The splice further includes a second fiber having a second MFD and a second MFD expansion rate, wherein the second MFD is lower than the first MFD. The second fiber comprises a core, a cladding radially surrounding the core, and a zone of high-concentration of fluorine between the core and the cladding. The rate of MFD expansion of the first fiber is less than the rate of MFD expansion of the second fiber during the fusion splicing operation.
Abstract:
Provided is an optical fiber having holes extending along the axis whose transmission loss is substantially reduced and the manufacturing method thereof. First, a plurality of through-holes 9 are formed in a preform 5 extending along the preform axis. Subsequently, the preform 5 is heated by heating means 24 in the furnace preferably for 30 minutes or more at a temperature equal to or more than 800null C. while flowing a dry gas in the through-holes 9. As a result, the OH group which exists on the surfaces of the inner walls 5a of the through-holes 9 of the preform 5 is discharged outside the preform. Subsequently, the preform 5 is drawn into an optical fiber.
Abstract:
An optical fiber including a core having an area of about several times an optical wavelength and composed of a hollow hole, and a cladding having a diffraction grating which is arranged at least in a peripheral area adjacent to the core and has a grating period equal to ½ the optical wavelength.
Abstract:
A non-porous, transparent glass-ceramic body that is consolidated from a predominately silica-based preform (SiO2+GeO2 85-99.0 wt. %) containing rare earth fluoride crystals embedded within by solution chemistry. The glass ceramic body is suited for making fibers for optical amplifiers.
Abstract:
A very high power fiber light source can be realized by using a high concentration of doping and by pumping the cladding of the doped fiber. The light that enters the cladding will then enter the core and amplified spontaneous emission will result. With this arrangement, higher power, a broader emission spectrum, and low radiation sensitivity can be achieved. These devices can also be configured as amplifiers.
Abstract:
In a known method, a quartz glass preform is produced by supplying a glass-forming base material in liquid form to an injection nozzle of a multi-nozzle flame deposition burner, vaporizing or gasifying the liquid glass-forming base material in the deposition burner, mixing the vaporized or gasified glass-forming base material with a gas containing oxygen under creation of SiO.sub.2 particles in a chemical reaction, deposition of the SiO.sub.2 particles on a substrate under creation of a porous preform and sintering of the preform. In this method, expensive devices such as pumps and ultrasonic vaporizers are needed for the vaporization of the liquid glass-forming base material; in addition, these devices are subject to mechanical wear and chemical attack and furthermore, they require extensive maintenance and due to their size result in a great height of construction. In order to avoid these disadvantages, a method is proposed according to the invention wherein a gas for the creation of a mist is fed to the deposition burner for the vaporization or gasification of the glass-forming base material, resulting in the creation of a low pressure in the area of the injection nozzle orifice. In an apparatus suitable for implementing the method, a vaporizing device comprises a vaporizing nozzle for the supply of a vaporizing gas, said nozzle being located adjacent to the injection nozzle and having an opening which, as seen in the direction of travel of the vaporizing gas, extends in a plane behind the injection nozzle opening.
Abstract:
An optical amplifying fiber including a clad, a first core provided inside the clad and containing Ge, a second core provided inside the first core and containing Er and Al, and a third core provided inside the second core and containing Ge. The second core has a refractive index higher than that of the clad, and the first and third cores have refractive indexes each of which is higher than that of the second core. Since the third core having the high refractive index is provided at a central portion, it is possible to make smaller a mode field diameter and hence to improve a conversion efficiency of pumping light into signal light. Further, since the second core contains Al as an amplification band width increasing element, it is possible to sufficiently ensure a wide amplification band width.
Abstract:
An optical waveguide for fiber-optic amplifiers is disclosed where the Progression of the fluorescence band of optical waveguides that are doped with erbium and aluminum can be additionally flattened if the core contains fluorine, e.g., in the form of ErF.sub.3 and AIF.sub.3, as an additional doping agent.
Abstract:
A master oscillator and power amplifier configuration for a high power cladding-pumped laser structure, and a method of making same, is disclosed. The laser structure comprises a single mode core having at least one oscillator defined therein, and a first and second cladding layer for waveguiding and radiation retention. The core is doped with refractive-index modifying dopants, in addition to ionized rare earth elements. The refractive-index modifying dopants facilitate writing one or more spaced pairs of index gratings in the core, each pair defining an oscillator. Oscillator cavity length is determined by the desired mode spacing and is less than one-half of the single mode core length. The index gratings are formed via a ultraviolet light-induced refractive index change in the core, which index change varies periodically along the core. The periodic variation is created by projecting an interference pattern on the core.
Abstract:
A process for supplying a gas to a reactor comprising the steps of:(i) continuously measuring density of the gas, the gas including at least one component which is susceptible to formation of an undesired side product as shown by a variation in density of the gas; and(ii) modifying feed conditions of the gas if formation of the undesired side product is shown by a variation in the density of the gas.The process can be employed to continuously monitor the content of diborane (B.sub.2 H.sub.6) in a mixture with silane (SiH.sub.4) in a process for producing a borophosphosilicate glass.An apparatus for supplying a gas to a reactor is also disclosed.