Abstract:
A polymer composition containing a polymer (B) obtained by polymerizing a monomer composition containing: a methacrylic acid ester macromonomer (b1) represented by the following formula (1); and another monomer (b2). Also, a porous membrane formed from a membrane forming polymer (A) and the aforementioned polymer composition.
Abstract:
A fluoropolymer including a vinylidene fluoride unit, a tetrafluoroethylene unit, and a unit represented by the following formula (1): —CHX1—CX2(OR)— (1) wherein one of X1 and X2 is a hydrogen atom, and the other is a fluorine atom; and R is a hydrogen atom or a C1-C8 alkyl group.
Abstract:
The present invention aims to provide a porous polymer membrane that is excellent not only in water permeability and alkali resistance but also in mechanical strength. The porous polymer membrane of the present invention includes a fluoropolymer (A) that includes a vinylidene fluoride unit and a tetrafluoroethylene unit.
Abstract:
Disclosed is a porous polyimide membrane of a three-layer structure having two surface layers (a) and (b) and a macrovoid layer interposed between the surface layers (a) and (b), wherein the macrovoid layer has a partition wall joined to the surface layers (a) and (b) and plural macrovoids surrounded by the partition wall and the surface layers (a) and (b), with an average void diameter in a membrane plane direction of from 10 to 500 μm; each of the partition wall of the macrovoid layer and the surface layers (a) and (b) has a thickness of from 0.1 to 50 μm and has plural pores having an average pore diameter of from 0.01 to 5 μm, the pores being communicated with each other and also communicated with the macrovoids; and the membrane has a total membrane thickness of from 5 to 500 μm and a porosity of from 70 to 95%.
Abstract:
Provided herein are bimodal porous polymer microspheres comprising macropores and micropores. Also provided herein are methods and apparatus for fabrication such microspheres. Further provided herein are methods of using bimodal porous polymer microspheres.
Abstract:
The present invention relates to a method for preparing an open pourous polymer material, wherein said method comprises forming or a polymer solution, addition of a porogen to said polymer solution and precipitation with water of polymer from said polymer solution, and said method then comprises removal of solvent and porogen from said polymer material wherein said precipitation is homogenous through that said water is in form of crystal water and that said crystal water is bonded to said porogen, wherein said porogen is a sugar hydrate. It further relates to an open porous polymer material, a mixture comprising a sugar hydrate and a polymer solution. and a designed material, and uses thereof.
Abstract:
Provided is a porous para-oriented aromatic polyamide film which contains fine particles composed of a heat-resistant resin in an amount of 10 to 400 parts by weight based on 100 parts by weight of a pare-oriented aromatic polyamide and has a linear thermal expansion coefficient at 200 to 300° C. of from −50×10−6/° C. to +50×10−6/° C. The porous para-oriented aromatic polyamide film shows excellent tear propagation resistance and has light weight and low linear thermal expansion coefficient, and is suitable as a prepreg material used for a base substrate for printed circuit board.
Abstract:
Supercritical drying has distinct advantages in generating microcellular materials. The dimensional stability of the polymer is not affected on drying because the supercritical process does not go through the two phase path and therefore the effect of capillary forces is absent. This helps in maintaining the morphology of the final polymer structure and better control over cell size.Organic microcellular foams were prepared by polymerizing directly in a near-critical fluid and pursuing the supercritical drying in the same reactor. The critical variables are the choice of a diluent with a strong enough solvent power to stabilize the polymer matrix, but with a low enough critical temperature to permit critical point drying without damage to the polymer matrix.
Abstract:
A method of producing a plastic sheet with a porous surface layer suitable for use as, for example, a recording medium on which characters and images are printed by ink jet or thermal-transfer printing method. The method comprises preparing a solution by dissolving two or more kinds of plastics having low levels of miscibility to each other in a solvent, applying said solution to a substrate, passing said substrate with said solution applied thereto through a liquid which dissolves said solvent but does not dissolve said plastics thereby solidifying said plastics, and drying said substrate with the solidified plastic layer. Preferably, two or more kinds of plastics having low levels of miscibility to each other include mainly a material A which is vinyl chloride or its compolymer and a material B which is acrylonitrile or its copolymer.
Abstract:
Highly useful novel microcellular polymeric structures, especially films and fibers, are prepared from certain solid polymers. Aromatic polysulfones, polyimides, polyhydantoins, polyamides and polyparabanic acid are the preferred ones for the novel structures of the invention.