Abstract:
The present invention relates to a method of obtaining a solid material based on a polymer having its cellobiose units exhibiting the following characteristics: at least some of the cellobiose units have at least one carboxylic acid function attached to the C6 carbon, the other C6 carbons having a primary alcohol function attached thereto; and at least some of the cellobiose units have at least one of the two rings open between the C2 and C3 carbons, the other C2 and C3 carbons forming a ring and having an alcohol function attached thereto. Such a material, advantageously a textile, may be used as a compress.
Abstract:
A hydrogel tissue adhesive having decreased degradation time is described. The hydrogel tissue adhesive is formed by reacting an oxidized polysaccharide with a water-dispersible, multi-arm polyether amine in the presence of an oligomer additive, which promotes the degradation of the hydrogel. The hydrogel may be useful as a tissue adhesive or sealant for medical applications, such as a hemostat sealant or to prevent undesired tissue-to-tissue adhesions resulting from trauma or surgery.
Abstract:
The present invention is directed to a co-attrited stabilizer composition comprising: a) microcrystalline cellulose in an amount of from 20%-90% by weight of the composition; b) a hydrocolloid in an amount of from 5%-50% by weight of the composition, wherein the hydrocolloid is selected from at least one member of the group consisting of carboxymethyl cellulose having a degree of substitution of at least 0.95, pectin, alginate, carrageenan, xanthan gum, agar gum, wellan gum, or gellan gum; and c) a starch in an amount of from 5%-50% by weight of the composition, wherein the stabilizer composition has a gel strength (G′) of at least 25 Pa when measured after 24 hours in a 2.6% solids water dispersion at 20° C. The composition is useful as a stabilizer, particularly in food and beverage products.
Abstract:
A cellulose composite which contains a cellulose and a polysaccharide and which is characterized in that the median diameter of colloidal cellulose composites contained in the cellulose composite is 0.85 μm or more as measured by a dynamic light scattering method.
Abstract:
Surgical devices and methods are provided for preventing the formation of post-operative adhesions. In one device, an envelope of bioabsorbable material defines at least one opening, and a layer of bioabsorbable adhesion-preventing material is disposed on an exterior surface of the envelope. A rigid or semi-rigid barrier member is at least partially disposed in a space inside the envelope, without adhering to the envelope such that the barrier member can be pulled out of the envelope through the opening. In another device, a rigid or semi-rigid barrier member is removably attached to a layer of bioabsorbable adhesion-preventing material by a controlled adhesive. In another device, a rigid or semi-rigid bioabsorbable barrier member, such as compressed cellulose, is attached to a layer of bioabsorbable adhesion-preventing material. The envelope of bioabsorbable material may include cellulose or oxidized regenerated cellulose. The adhesion-preventing material may include chemically modified sodium hyaluronate and carboxymethylcellulose.
Abstract:
A process for dissolving modified cellulose includes contacting modified cellulose solution with at least one neutralizing agent to form a plurality of modified cellulose particles.
Abstract:
The present invention relates to a prosthesis (100) comprising an openworked three-dimensional knit (101) comprising a front face and a rear face, each face being formed with one or more laps of yarns defining pores on said face, the front face being bound to the rear face by connecting yarns defining a spacer, characterized in that the connecting yarns are distributed so that they define an entanglement of yarns crossing each other at the spacer, without obstructing the pores of the front and rear faces.
Abstract:
Novel aldehyde-functionalized polysaccharide compositions are described that are more stable in aqueous solution than oxidized polysaccharides or other types of polysaccharides containing pendant aldehyde groups. The aldehyde-functionalized polysaccharides may be reacted with various amine-containing polymers to form hydrogel tissue adhesives and sealants that may be useful for medical applications such as wound closure, supplementing or replacing sutures or staples in internal surgical procedures such as intestinal anastomosis and vascular anastomosis, tissue repair, preventing leakage of fluids such as blood, bile, gastrointestinal fluid and cerebrospinal fluid, ophthalmic procedures, drug delivery, and preventing post-surgical adhesions.
Abstract:
In various embodiments, a tissue thickness compensator can comprise a plurality of fibers. In at least one embodiment, such fibers can include a plurality of first fibers comprised of a first material and a plurality of second fibers comprised of a second material. A tissue thickness compensator can comprise a plurality of layers wherein each layer can be comprised of one or more medicaments. Certain embodiments are disclosed herein for manufacturing a tissue thickness compensator comprising fibers, for example.
Abstract:
Disclosed are compositions and methods for preventing or reducing postoperative ileus and gastric stasis. Such compositions comprise a combination of an oxidized regenerated cellulose component and a non-steroidal anti-inflammatory drug (NSAID) which functions as an inhibitor of cyclooxygenase enzyme (Cox) activity. Such methods comprise administering an effective amount of the composition directly to the serosal surfaces of the gastrointestinal and other visceral organs.