Abstract:
Methods, compositions, systems and kits relating to processing of cassava bagasse into bacterial feedstock, such as bacterial feedstock suitable for nanocellulose production, are disclosed. Cassava bagasse may be contacted with an acid catalyst or an enzymatic catalyst to produce a hydrolysate, which can be used to form a pre-fermentation medium. Incubation of the pre-fermentation medium with a first population of microorganisms yields a supernatant enriched in reducing sugars, which may be used to form a culture medium which can be used to support growth of a second population of microorganisms to form the nanocellulose.
Abstract:
The present invention generally relates to bacteriologically pure bacterial cultures of novel strains of plant growth-promoting bacteria, and inoculums comprising the same. The invention is also directed to plant seeds coated with the inoculums, kits comprising the inoculums and methods for stimulating plant growth by applying the biologically pure bacterial culture or the inoculum to a plant, plant seed, or plant growth medium.
Abstract:
Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.
Abstract:
Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.
Abstract:
Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.
Abstract:
Alcaligenes latus bacterial strain TXD-13 VKPM B 75-05 is capable of degrading polychlorinated biphenyls (PCBs). The strain may be employed to detoxicate environment media and PCB-containing industrial waste. To produce biomass, the strain is incubated on media which contain carbon sources, nitrogen sources and mineral salts. The strain is cultivated by a subsurface method up to a titer from 6.0·108 to 2.0×109 cells per cu cm. The produced biomass is used for degrading PCBs in concentrations from 107 to 108 cells per cu cm. The strain ensures from 35 to 50% reduction in PCB content in soil and water.
Abstract translation:产碱杆菌菌株TXD-13 VKPM B 75-05能够降解多氯联苯(PCBs)。 该菌株可用于对环境介质和含PCB工业废物进行排毒。 为了生产生物质,将菌株在含有碳源,氮源和矿物盐的培养基上孵育。 该菌株通过地下方法培养,直至滴度从6.0.108至2.0×10 9个细胞/ cm 3。 生产的生物质用于以每立方厘米浓度为107至108个细胞降解PCBs。 该应变确保土壤和水中PCB含量降低35%至50%。
Abstract:
A method and composition for treating a bacterial infection in humans and animals is disclosed. The composition contains an anti-bacterial agent that inhibits or kills a variety of Gram-negative and Gram-positive pathogenic bacteria, including several previously shown to be drug-resistant. In particular, the anti-bacterial agent comprises an antibiotic produced by members of the Alcaligenes genus. For instance, in one embodiment, the antibiotic is produced by the M3A strain of Alcaligenes faecalis. The antibiotic of the present invention can be administered parenterally or via a mucosal route.
Abstract:
The disclosure relates to the production and the use, by genetic engineering, of plasmids and bacterial strains containing, on a short, precisely characterizable DNA segment, the gene tfda or a gene almost identical to tfdA. The novel plasmids and microorganisms are suitable for the production of 2,4-D (2,4-dichlorophenoxyacetic acid)-monooxygenase, and as starting materials for the transfer, by genetic engineering of the 2,4-D-degrading property of this enzyme to various organisms.
Abstract:
The invention is a biologically pure culture of Alcaligenes faecalis DSM 6335. Furthermore, the culture or a mutant thereof, is capable of growing with 2-cyanopyridine as the sole carbon, nitrogen and energy source in order to produce 6-hydroxypicolinic acid. The specific reaction is the conversion of 2-cyanopyridine as the substrate into 6-hydroxypicolinic acid.
Abstract:
A microbiological process for the production of 6-hydroxypicolinic acid starting from picolinic acid and/or its salts. The concentration of picolinic acid and/or its salts is selected so that the 6-hydroxypicolinic acid is not further metabolized. The process is performed either by microorganisms of genus Pseudomonas, Bacillus, Alcaligenes, Aerococcus, or Rhodotorula, or with biomass using picolinic acid, which grow with picolinic acid as the sole carbon, nitrogen and energy source.