Abstract:
The invention relates to a valve spring device for a valve in an internal combustion engine. The valve has a valve disc (4) cooperating with a valve seat (5) to control the flow in an engine duct (3), and a valve spindle (6) extending from the valve disc (4). The valve spring device comprises at least one spring (10,11) which is arranged to act between an abutment surface (12) of the engine and an actuating device (8) joined to the valve spindle (6) to bias the valve disc (4) towards the valve seat (5). According to the invention the spring (10,11) consists of a relatively weak helical compression spring. The actuating device (8) is arranged around the valve spindle (6) and is axially displaceable and sealingly guided to form a chamber (15), which at one end is limited by the abutment surface (12) and at the other end is limited by the actuating device (8). The chamber (15) is in communication (24- 27) with the engine duct (3) in which the valve (4,6) is arranged to control the flow.
Abstract:
This invention consists of an air cylinder that encompasses the upper portion of each valve stem and guide on an internal combustion engine. The air cylinders are provided with annular pistons. The upper end of each valve stem is provided with a dish-shaped washer that will rest on the top of a piston when the valve is open and will be forced upward by the top of the piston by the air in the cylinder to urge the valve toward its closed position.
Abstract:
A valve assembly includes a valve having a head and a stem. The head is configured to seal against a valve seat. The stem has a distal end. A first piston radially extends from the stem of the valve and is enclosed within a housing. A second piston is fixed to the distal end of the stem and seals against the housing. A first chamber is defined by the first piston, second piston and the housing and receives a compressed gas and maintains a desired gas pressure. A spring device is disposed intermediate the first piston and the housing. During normal operation of the engine, the gas pressure within the first chamber seals the head of the valve against the valve seat with the spring device in a compressed arrangement and wherein during periods of insufficient gas pressure the spring device biases the valve to seal against the valve seat.
Abstract:
Embodiments relate generally to energy storage systems, and in particular to energy storage systems using compressed gas as an energy storage medium. In various embodiments, a compressed gas storage system may include a plurality of stages to convert energy into compressed gas for storage, and then to recover that stored energy by gas expansion. In certain embodiments, a stage may comprise a reversible compressor/expander having a reciprocating piston. Pump designs for introducing liquid for heat exchange with the gas, are described. Gas flow valves featuring shroud and/or curtain portions, are also described.
Abstract:
A device and method for double actuating, by pressure differential, a valve of a combustion chamber of an internal combustion engine, wherein the double actuating device comprises an actuator piston displaceably arranged in an actuator cylinder between two chambers of inversely varying volume, mechanically attached to the stem of said valve. The valves are double actuated independently of engine operation, the method allowing for variation in timing, duration, and lift under an electronically controlled fluid circuit, using alterable constants to allow for modifiable operating modes, also allowing reprogramming of said electronics to provide for in-place upgrades.