Abstract:
Actuators, and corresponding methods and systems for controlling such actuators, provide independent valve control with a large initial or opening force. In an exemplary embodiment, an actuator includes a driver further including a housing defining a longitudinal axis and first and second directions, an actuation mechanism capable of generating actuation force at least in the first direction, and a rod with one end operably connected with at least one part of the actuation mechanism and with the other end available for an operable connection with a load such as an engine valve; at least one return spring operably connected with the rod through a spring retainer assembly and biasing the rod in the second direction; and a pneumatic booster further including a pneumatic cylinder, a pneumatic piston operably connected with the rod through the spring retainer assembly and biasing the rod in the first direction, a charge mechanism providing a controlled fluid communication between the pneumatic cylinder and a high-pressure gas source, and a bleed mechanism providing a controlled fluid communication between the pneumatic cylinder to a low-pressure gas sink.
Abstract:
Actuators, and corresponding methods and systems for controlling such actuators, provide independent valve control with a large initial or opening force. In an exemplary embodiment, an actuator includes a driver further including a housing defining a longitudinal axis and first and second directions, an actuation mechanism capable of generating actuation force at least in the first direction, and a rod with one end operably connected with at least one part of the actuation mechanism and with the other end available for an operable connection with a load such as an engine valve; at least one return spring operably connected with the rod through a spring retainer assembly and biasing the rod in the second direction; and a pneumatic booster further including a pneumatic cylinder, a pneumatic piston operably connected with the rod through the spring retainer assembly and biasing the rod in the first direction, a charge mechanism providing a controlled fluid communication between the pneumatic cylinder and a high-pressure gas source, and a bleed mechanism providing a controlled fluid communication between the pneumatic cylinder to a low-pressure gas sink.
Abstract:
A split-cycle engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through intake and compression strokes during a single rotation of the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through expansion and exhaust strokes during a single rotation of the crankshaft. A crossover passage interconnects the expansion and compression cylinders. The crossover passage includes crossover compression (XovrC) and crossover expansion (XovrE) valves defining a pressure chamber therebetween. At least one of the XovrC and XovrE valves is a balanced valve. A fluid pressure balancer biases the valve for balancing fluid pressures acting against the valve in both opening and closing directions, reducing the forces required in actuating the valve.
Abstract:
A split-cycle engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through intake and compression strokes during a single rotation of the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through expansion and exhaust strokes during a single rotation of the crankshaft. A crossover passage interconnects the expansion and compression cylinders. The crossover passage includes crossover compression (XovrC) and crossover expansion (XovrE) valves defining a pressure chamber therebetween. At least one of the XovrC and XovrE valves is a balanced valve. A fluid pressure balancer biases the valve for balancing fluid pressures acting against the valve in both opening and closing directions, reducing the forces required in actuating the valve.
Abstract:
The invention relates to a valve spring device for a valve in an internal combustion engine. The valve has a valve disc (4) cooperating with a valve seat (5) to control the flow in an engine duct (3), and a valve spindle (6) extending from the valve disc (4). The valve spring device comprises at least one spring (10,11) which is arranged to act between an abutment surface (12) of the engine and an actuating device (8) joined to the valve spindle (6) to bias the valve disc (4) towards the valve seat (5). According to the invention the spring (10,11) consists of a relatively weak helical compression spring. The actuating device (8) is arranged around the valve spindle (6) and is axially displaceable and sealingly guided to form a chamber (15), which at one end is limited by the abutment surface (12) and at the other end is limited by the actuating device (8). The chamber (15) is in communication (24- 27) with the engine duct (3) in which the valve (4,6) is arranged to control the flow.
Abstract:
A hydraulic support element for a variable valve train of an internal combustion engine, which has a cylindrical pot-shaped housing and a hollow cylindrical piston guided for movement in this housing and whose inner end is supported by a compression spring on the base wall of the housing. The outer end extends past the housing and is formed as a hemispherical bearing head. The interior is divided into an inner supply pressure space and an outer switching pressure space that are connected by inlet openings in the cylindrical side walls of the housing and the piston with a cylinder head side supply pressure line and by a non-return valve to a high-pressure space enclosed between the inner end of the piston and the base wall of the housing, or to a cylinder head side switching pressure line and also by a central hole formed in the bearing head to a rocker arm side switching pressure channel. To prevent the entry of harmful particles into the supply pressure space and/or the switching pressure space of the piston, the piston has a ring-shaped recess in its cylindrical side wall in the area of the inlet openings on the outside in the radial direction, and a filter element constructed as a ring filter is inserted into the ring-shaped recess of the piston with an axial positive-fit connection.
Abstract:
Systems and methods for operating exhaust valves of an internal combustion engine with poppet exhaust valves are described. The systems and methods provide for locking exhaust valves in a closed state when the exhaust valves are in mechanical communication with a base circle of a camshaft lobe. Locking the exhaust valves in a closed state may reduce the possibility of exhaust pressures opening the exhaust valves at times they may not be desired to be open.
Abstract:
Actuators, and corresponding methods and systems for controlling such actuators, provide independent valve control with a large initial or opening force. In an exemplary embodiment, an actuator includes a driver further including a housing defining a longitudinal axis and first and second directions, an actuation mechanism capable of generating actuation force at least in the first direction, and a rod with one end operably connected with at least one part of the actuation mechanism and with the other end available for an operable connection with a load such as an engine valve; at least one return spring operably connected with the rod through a spring retainer assembly and biasing the rod in the second direction; and a pneumatic booster further including a pneumatic cylinder, a pneumatic piston operably connected with the rod through the spring retainer assembly and biasing the rod in the first direction, a charge mechanism providing a controlled fluid communication between the pneumatic cylinder and a high-pressure gas source, and a bleed mechanism providing a controlled fluid communication between the pneumatic cylinder to a low-pressure gas sink.
Abstract:
Systems and methods for operating exhaust valves of an internal combustion engine with poppet exhaust valves are described. The systems and methods provide for locking exhaust valves in a closed state when the exhaust valves are in mechanical communication with a base circle of a camshaft lobe. Locking the exhaust valves in a closed state may reduce the possibility of exhaust pressures opening the exhaust valves at times they may not be desired to be open.
Abstract:
A split-cycle engine includes a crankshaft rotatable about a crankshaft axis. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through intake and compression strokes during a single rotation of the crankshaft. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through expansion and exhaust strokes during a single rotation of the crankshaft. A crossover passage interconnects the expansion and compression cylinders. The crossover passage includes crossover compression (XovrC) and crossover expansion (XovrE) valves defining a pressure chamber therebetween. At least one of the XovrC and XovrE valves is a balanced valve. A fluid pressure balancer biases the valve for balancing fluid pressures acting against the valve in both opening and closing directions, reducing the forces required in actuating the valve.