Abstract:
A thermal absorption structure of a radiation thermal detector element may include an optically transitioning material configured such that optical conductivity of the thermal absorption structure is temperature sensitive and such that the detector element absorbs radiation less efficiently as its temperature increases, thus reducing its ultimate maximum temperature.
Abstract:
An entry detection device includes first light marks and second light marks. A control signal corresponding to a part of the first light marks is an error detection code of the control signal corresponding to the other part of the first light marks. A first inspection value is generated based on a first part of a light receiving signal corresponding to the other part of the first light marks. A second inspection value is generated based on a reverse bit string of a third part of the light receiving signal corresponding to a part of the second light mark paired with the other part of the first light marks. An entry is detected based on the first inspection value and the second inspection value.
Abstract:
Various embodiments related to monitoring for optical faults in an optical system are disclosed. For example, one disclosed embodiment provides, in an optical system comprising a light source, a light outlet, and an optical element disposed between the light source and the light outlet, a method of monitoring for optical system faults. The method includes detecting, via a light sensor directed toward an interface surface of the optical element closest to the light source, an intensity of light traveling from the interface surface of the optical element to the light sensor, and comparing an intensity of light detected to one or more threshold intensity values. The method further includes identifying an optical system fault condition based on comparing the intensity of light detected to one or more threshold values, and modifying operation of the optical system.
Abstract:
A light detecting device includes a case, a light introducing member and a light receiving element. A predetermined light is incident into an inlet face of the introducing member, and an outlet face of the introducing member emits the light incident into the inlet face. A first distance is defined between a top point of the outlet face and a focus of the introducing member, and a second distance is defined between the top point of the outlet face and a light receiving face of the receiving element. The outlet face has a convex lens shape in a manner that the first distance is smaller than the second distance.
Abstract:
A display device and an electronic apparatus comprising the same are disclosed. The display apparatus includes a photo-sensor for detecting ambient light and outputting a photocurrent according to the intensity of the ambient light, wherein the display apparatus comprises a current sampling unit and a light detection control unit. The current sampling unit is configured to sample the photocurrent outputted from the photo-sensor and to output a plurality of sampling signals to indicate the magnitude of the photocurrent. The light detection control unit is configured to determine an average of the sampling signals outputted from the current sampling unit. The current sampling unit starts a next sampling period corresponding to the end of one of the sampling signals.
Abstract:
Embodiments provide a handheld fluorometer and method of determining a concentration of a product within a sample. In some cases the handheld fluorometer includes an immersible sensor head that measures a fluorescence of the product and a controller that calculates the concentration of product. In some cases the handheld fluorometer includes a handheld controller module, an immersible sensor head connected to the controller module, a sample cup for containing a water sample, and a fastener that removably fastens the sample cup about the immersible sensor head. In some cases the sensor head is angled with respect to the controller module and the fluorometer provides a substantially stable base. The sample cup can be removed to acquire a sample of water containing the product and then refastened about the sensor head for determining the concentration.
Abstract:
Provided is a photodetection device which is small in size and has excellent sensitivity. A photodetection device puts cathode terminals of photodiodes having different spectral characteristics into an open end state, and detects light intensity of a desired wavelength region according to a difference in electric charges that have been stored in those photodiodes in a given period of time. The photodiodes employ a system of storing electric charges, and hence even if a photocurrent is small, the photocurrent may be stored to obtain the electric charges required for detection, and the downsizing and high detection performance of a semiconductor device that forms the photodiodes may be achieved. Further, a wide dynamic range may be realized with an electric charge storage time being variable according to the light intensity, to intermittently drive an element required for difference detection at the time of difference detection so as to suppress electric power consumption, or to average the output so as to reduce flicker.
Abstract:
In a metallic structure including a metallic nano-chain with plasmon resonance absorption, a metallic nanoparticle forming the metallic nano-chain is formed in a circular, triangle, or rhomboid shape. The wavelength selectivity can be increased also by forming a closed region by mutually linking all of metallic nanoparticles that are mutually linked with bottlenecks. In a photodetector, a photodetection unit including a current detection probe, a nano-chain unit, and a current detection probe is arranged on a substrate. The nano-chain unit is a metallic structure with plasmon resonance absorption, where metallic nanoparticles are mutually linked with bottlenecks. Each current detection probe has a corner whose tip is formed with a predetermined angle, and this corner is arranged to face the tip of the nano-chain unit, i.e., a corner of the metallic nanoparticle. Photodetection with high wavelength selectivity is performed based on a change in the initial voltage of the current-voltage characteristic.
Abstract:
In a liquid crystal display device, noise light to a photodetecting element is reduced, whereby an improved S/N ratio is achieved. The liquid crystal display device includes: a first substrate (100) on which a pixel circuit is provided; a second substrate (101) arranged so as to face the first substrate (100) with a liquid crystal layer (30) being interposed therebetween; a photodetecting element (17) provided on the first substrate (100); and a detection light filter (18) that is provided between the photodetecting element (17) and the liquid crystal layer (30) and that cuts off light in a band outside a signal light band that is a band of light to be detected by the photodetecting element (17).
Abstract:
A plurality of transistors in which ratios of a channel length L to a channel width W, α=W/L, are different from each other is provided in parallel as output side transistors 105a to 105c in a current mirror circuit 101 which amplifies a photocurrent of a photoelectric conversion device and an internal resistor is connected to each of the output side transistors 105a to 105c in series. The sum of currents which flow through the plurality of transistors and the internal resistor is output, whereby a transistor with large amount of α can be driven in a linear range with low illuminance, and a transistor with small amount of α can be driven in a linear range with high illuminance, so that applicable illuminance range of the photoelectric conversion device can be widened.
Abstract translation:在通过放大光电流的电流镜电路101中,作为输出侧晶体管105a〜105c并联设置多个晶体管,其中沟道长度L与沟道宽度W,α= W / L的比例彼此不同 的一个光电转换装置和一个内部电阻器串联连接到每个输出侧晶体管105a至105c。 输出流过多个晶体管的电流和内部电阻器的总和,由此可以以低照度在线性范围内驱动具有大量α的晶体管,并且可以在a中驱动具有少量α的晶体管 具有高照度的线性范围,可以扩大光电转换装置的适用照度范围。