Abstract:
The system developed for the continuos temperature measurement of molten metal (1), like in the case of the continuous casting machine tundish (2), uses an optical process to control the continuous casting machine speed, and it consists of an optical infra-red sensor (8) protected by a cooled jacket (30). This two-color sensor (8), fitted with optical fiber (9) and an optical signal converter (10), is focused inside a high thermal and light conductivity ceramic tube (15), and it enables accurate temperature readings of molten steel (1) in the tundish (2).This practical device avoids the inconvenience of the method currently being used. It reduces the operator's high temperature exposure time, lowers maintenance downtime, minimizes the operating risks, improves safety and enables fast, simple replacement, resulting in improved slab quality and, as a consequence, lower costs.
Abstract:
An infrared imaging system used for providing images from a plurality of views. The multiple view infrared imaging system includes a plurality of lens and infrared focal plane array (FPA) pairings, wherein each pairing can be used to provide an image and/or sample scene data of a distinct view. A single set of processing circuitry and a single set of one or more output elements may be utilized to provide such images. A multi-input switch may be utilized in combination with the single set of processing circuitry and output elements to provide images from any of the lens and FPA pairings based on the positioning of the switch.
Abstract:
An ear thermometer has a main body, and a probe projected from the main body. The ear thermometer has a casing, a sensor module and a plastic tube. The casing has an opening formed in a front side thereof. The sensor module is installed inside the casing. The plastic tube is installed between the casing and the sensor module for positioning the sensor module inside the casing. The probe has an opening formed in a front side thereof for receiving the infrared radiation in a predetermined range. Hence, the sensor module is used to measure true radiation heat from a subject, and prevents the sensor module from measuring an object other than the subject.
Abstract:
One embodiment of the invention is directed to methods and apparatus for determining a variation of a calibration parameter of a pixel of the thermal sensor during operation of the imaging apparatus, after an initial calibration procedure. Another embodiment of the invention is directed to methods and apparatus for calculating a gain calibration parameter using first and second ambient temperature values and respective first and second resistance values for a pixel of a sensor. A further embodiment of the invention is directed to calculating an offset calibration parameter for at least one pixel using a gain of the at least one pixel between first and second times and an ambient temperature at a third time, wherein the pixel is exposed to both scene and ambient radiation at the third time.
Abstract:
An infrared ear thermometer includes a detector head housing, a heat sink, a recess formed in the heat sink, a thermopile sensor mounted within the recess, a thermistor, and temperature determination circuitry. The recess defines an aperture that limits the field of view of the thermopile sensor. The thermal capacities and conductivities of the heat sink and the thermopile sensor are selected so that the output signal of the thermopile sensor stabilizes during a temperature measurement. A method of determining temperature using the ear thermometer takes successive measurements, stores the measurements in a moving time window, averages the measurements in the moving window, determines whether the average has stabilized, and outputs an average temperature. A method of calculating a subject's temperature determines the temperature of a cold junction of the thermopile, looks up a bias and slope of the thermopile based upon the temperature of the cold junction, measures the output of the thermopile, and calculates the subject's temperature based upon a linear relationship between the output and the subject's temperature. The linear relationship is defined by the bias and the slope.
Abstract:
Temperature states of a clinical thermometer body and an environment are estimated by temperatures measured by a first temperature sensor integrally formed together with an infrared sensor arranged to the distal end of a probe and a second temperature sensor arranged on the bottom side of a probe holder, and processes suitable for the respective temperature states are performed. An estimation error or the reliability of an estimation value is calculated by the temperatures to notify a user of the estimation error or the reliability by an LCD or the like.
Abstract:
The temperature of a semiconductor wafer (160) is measured while undergoing processing in a plasma (168) environment. At least two pyrometers (162, 164) receive radiation from, respectively, the semiconductor wafer and the plasma in a plasma process chamber. The first pyrometer receives radiation from either the front or rear surface of the wafer, and the second pyrometer receives radiation from the plasma. Both pyrometers may be sensitive to the same radiation wavelength. A controller (170) receives signals from the first and second pyrometers and calculates a corrected wafer emission, which is employed in the Planck Equation to calculate the wafer temperature. Alternatively, both pyrometers are positioned beneath the wafer with the first pyrometer sensitive to a first wavelength where the wafer is substantially opaque to plasma radiation, and the second pyrometer is sensitive to a wavelength where the wafer is substantially transparent to plasma radiation.
Abstract:
The present invention relates to a temperature measurement device, particularly to a temperature measurement device for the cold junction of a non-contact temperature measurement element, characterized in that a plurality of electrical-conductive pins is provided on the bottom surface of a base. A sensor element for detecting object temperature and a heat-conductive elongated block are provided on the top surface of the base, the heat-conductive elongated block having a sensor element for detecting ambient temperature secured on the top surface thereof, wherein the heat capacity of the sensor element for detecting ambient temperature together with that of the heat-conductive elongated block will approximately be equal to that of the sensor element for detecting object temperature, such that the heat-balance constants of the sensor element for detecting ambient temperature and the cold junction of the sensor element for detecting object temperature will virtually coincide with each other at an abrupt temperature change. Consequently, the dynamic temperature difference between the sensor element for detecting ambient temperature and the cold junction of the sensor element for detecting object temperature may be diminished. In this manner, not only the accuracy of the temperature measurement from the detected object may be raised significantly, but also the sensitivity of the measurement may be maintained effectively.
Abstract:
A CVD processing reactor employs a pyrometer to control temperature ramping. The pyrometer is calibrated between wafer processing by using a thermocouple that senses temperature during a steady state portion of a processing operation.
Abstract:
A fixing device is provided with a heat roller, which is brought into contact with a fixing medium to heat the same, and is further provided with a thermopile which is set in non-contact with the heat roller and detects a temperature of the heat roller based upon infrared rays irradiated from the heat roller. Moreover, the fixing device is provided with a direct measurement thermistor that is provided separately from the thermopile and set in direct contact with the heat roller. The temperature detected by the thermopile is corrected based upon a temperature detected by the direct measurement thermistor.