Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. The device further includes a heating element for heating one or more process chambers on the disk. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.
Abstract:
A microscope array for simultaneously imaging multiple objects. A preferred embodiment of a method according to the invention includes arranging the objects into an array, providing a microscope array having a plurality of imaging elements with respective fields of view arranged into a corresponding array such that the imaging elements are optically aligned respectively with the objects, and simultaneously imaging the objects with the microscope array to produce respective images of the objects. The invention also provides for scanning while imaging, and for stepping and repeating the imaging process.
Abstract:
A method of photometric in vitro determination of at least one blood gas parameter in a sample of whole blood. The whole blood sample is obtained by connecting an at least partially transparent sample container to an in vivo locality and transferring whole blood into the sample container, then breaking the connection. The sample container is arranged in an optical system which has a radiation source and a means for detecting radiation to locate the sample container between the radiation source and the radiation detection means. Radiation is transmitted to the sample from the radiation source and radiation emitted from the sample is transmitted to the radiation detection means. The detected radiation is used to determine the blood gas parameter of the sample. A system for use in this method has a radiation source, a radiation detection means, an at least partially transparent sample container, and a sample container station.
Abstract:
A sampling device for photometric determination of the content of an analyte in a sample of whole blood has at least one measuring chamber having two wall parts, at least one wall part being locally transparent, at least one wall part being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber. The measuring chamber also contains a transparent body having a radiation transmission characteristic dependent upon the concentration of a predetermined analyte in the whole blood sample. The sample device is employed in an analyzer for photometric determination of the content of an analyte in a sample of whole blood and in a method of photometric in vitro determination of the content of an analyte in a sample of whole blood. In the method, a sample of whole blood is transferred directly from an in vivo locality to the sampling device, the measuring chamber therein is deformed in a controlled manner to substantially drain the whole blood from the measuring chamber, radiation is transmitted through the substantially drained measuring chamber, detected, and the analyte content determined.
Abstract:
An improved control system for a stepper motor coil includes a flyback circuit that dissipates coil energy slowly while the coil is energized and operated in the chopping mode, while dissipating coil energy rapidly when the coil is switched to its de-energized phase.
Abstract:
The invention relates to a method and apparatus for conducting light onto cuvettes in a photometer. Onto each cuvette in a row, there is successively conducted light through a moving light-cutting disc (8), which is provided with a slot (10) at each light path. Thus the light passing through the adjacent cuvette does not disturb the measurement.
Abstract:
A photometric reading device comprises a plurality of reading elements (30), each comprising a light emitting diode and a corresponding photodiode on opposing sides of a sample pathway along which a sample microplate (10) can travel. The microplate (10) includes rows of sample wells arranged transverse to the line of relative motion of the microplate (10) and the reading elements (30).The reading elements (30) are arranged such that, during continuous relative motion of the reading elements (30) and the microplate (10), the reading elements (30) come into registration sequentially with the wells in the first row of wells in the microplate (10), then with the wells in the second row of wells, and so on.
Abstract:
Endotoxin contents in samples can be determined qualitatively, or quantitatively, singly or in parallel, with high precision in a short time by a process comprising applying a light to each sample solution, measuring an initial transmitted light amount I.sub.0 and a transmitted light amount at a time t, I(t), to give a ratio R(t)=I(t)/I.sub.0, and judging a gelation point by a threshold value of R(t), or further obtaining a gelation time from the gelation point. An apparatus used therefor is also disclosed.