Abstract:
An optical element is provided with: first polarization-separation layer (13) that is laminated on first surface (12b) of light guide body (12) and that, of the light incident from light guide body (12), transmits X-polarized light and reflects Y-polarized light that is orthogonal to the X-polarized light; polarization hologram layer (14) that is laminated on first polarization-separation layer (13) and that diffracts to a prescribed diffraction angle the X-polarized light that is incident within a prescribed range of angles of incidence and converts the X-polarized light to Y-polarized light; second polarization-separation layer (15) that is laminated on polarization hologram layer (14) and that, of the light incident from polarization hologram layer (14) transmits Y-polarized light and reflects X-polarized light; reflection layer (18) provided on second surface (12c) side of light guide body (12); and phase difference layer (17) that is provided between first surface (12b) of light guide body (12) and reflection layer (18) and that imparts a phase difference before and after transmission to mutually orthogonal polarization components of the incident light.
Abstract:
A method of amplitude electro-optic modulation. The method includes transmitting a narrowband laser light into an electro-optically active waveguide in a first direction. The electro-optically active waveguide has a grating for reflecting the narrowband laser light. The method also includes applying an electric signal to the electro-optically active waveguide and modifying the reflection of the grating in a wavelength region of the narrowband laser light by application of the electric signal.
Abstract:
Optical modulator having wide bandwidth based on Fabry-Perot resonant reflection is disclosed. The optical modulator includes: a bottom Distributed Bragg Reflector (DBR) layer; a top DBR layer including at least one layer, and a modified layer; and an active layer disposed between bottom and top DBR layers, wherein the at least one layer includes at least one pair of a first refractive index layer having a first refractive index and a second refractive index layer having a second refractive index, the modified layer includes at least one pair of a third refractive index layer having a third refractive index and a fourth refractive index layer having a fourth refractive index, the third and the fourth refractive indexes being different, and at least one of the third and the fourth refractive index layers has a second optical thickness that is not λ/4 or that is not an odd multiple thereof.
Abstract:
Methods and apparatus for providing a tunable absorption-emission band in a wavelength selective device are disclosed. A device for selectively absorbing incident electromagnetic radiation includes an electrically conductive surface layer including an arrangement of multiple surface elements. The surface layer is disposed at a nonzero height above a continuous electrically conductive layer. An electrically isolating intermediate layer defines a first surface that is in communication with the electrically conductive surface layer. The continuous electrically conductive backing layer is provided in communication with a second surface of the electrically isolating intermediate layer. When combined with an infrared source, the wavelength selective device emits infrared radiation in at least one narrow band determined by a resonance of the device. In some embodiments, the device includes a control feature that allows the resonance to be selectively modified. The device has broad applications including gas detection devices and infrared imaging.
Abstract:
An electro-optical filter made of a support in which an optical guide with a diffused channel waveguide and of a cover, that are created in borosilicate glass, and which includes a gap obtained by the use of suitable spacers, filled with a grating constituted of alternating strips of polymer and liquid crystal called POLICRYPS (Polymer Liquid CRYstal Polymer Slices), and with first electrodes that are coplanar to the support and next to the optical guide with a channel, that electrically control the grating making the filter tunable, and a manufacturing process.
Abstract:
Provided is a resonant reflective filter including a substrate and a grating layer, wherein the substrate is formed of a material having a lower reflective index than that of a material forming the grating layer. Thus, the resonant reflective filter can form a resonant spectrum having good symmetry and a sharp shape. Accordingly, the resonant reflective filter can have improved sensitivity and can be applied to optical systems that require a small linewidth.
Abstract:
A method of and apparatus for modulating an optical carrier by an incident electromagnetic field. The electromagnetic field propagates in a dielectric-filled transverse electromagnetic waveguide, At least one slice of an electro-optic material is disposed in the dielectric-filled transverse electromagnetic waveguide, the electro-optic material in the dielectric-filled transverse electromagnetic waveguide having at least one optical waveguide therein which has at least a major portion thereof guiding light in a direction orthogonal with respect to a direction in which the dielectric-filled transverse electromagnetic waveguide guides the incident electromagnetic field. Light is caused to propagate in the at least one optical waveguide in the at least one slice of an electro-optic material in the dielectric-filled transverse electromagnetic waveguide for modulation by the incident electromagnetic field.
Abstract:
An optical device includes an optical element, a detector and a controller. The optical element has an optical waveguide. Refractive index of the optical waveguide is controlled by a heater. A temperature of the optical element is controlled by a temperature control device. The detector detects a current flowing in the heater and/or a voltage applied to the heater. The controller controls an electrical power provided to the heater so as to be kept constant according to the detection result of the detector.
Abstract:
A wavelength converting apparatus comprising: a laser resonator; a first wavelength converting element that converts a fundamental wave outputted from the laser resonator into a harmonic wave; a first temperature control element that controls the temperature of the first wavelength converting element; a second wavelength converting element that converts a fundamental wave outputted from the first wavelength converting element into a harmonic wave; a second temperature control element that controls the temperature of the second wavelength converting element; a first detecting portion that detects an output of a harmonic wave outputted from the first wavelength converting element; a second detecting portion that detects an output of a harmonic wave outputted from the second wavelength converting element; and a controller that manages temperature control of the first wavelength converting element by the first temperature control element, temperature control of the second wavelength converting element by the second temperature control element, and current value control of a driving current applied to the laser light source.
Abstract:
An electro-optic modulator is formed on a silicon-on-insulator (SOI) rib waveguide. An optical field in the modulator is confined by using an electrically modulated microcavity. The microcavity has reflectors on each side. In one embodiment, a planar Fabry-Perot microcavity is used with deep Si/SiO2 Bragg reflectors. Carriers may be laterally confined in the microcavity region by employing deep etched lateral trenches. The refractive index of the microcavity is varied by using the free-carrier dispersion effect produced by a p-i-n diode formed about the microcavity. In one embodiment, the modulator confines both optical field and charge carriers in a micron-size region.