Abstract:
Electron emitters and a method of fabricating emitters are disclosed, having a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitter tips and decreases toward the base of the emitter tips. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitter tips having impurity gradients.
Abstract:
A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.
Abstract:
Some embodiments of the invention include structures and methods for a field emitter display device with a coating and an implantation layer underneath a surface of the emitter. Other embodiments are described and claimed.
Abstract:
A field emission electron source capable of achieving large current density is provided at low cost with good productivity. An insulating layer is formed on a substrate and has one or more openings; and an extraction electrode is formed on the insulating layer. In one or more of the openings, a plurality of emitters, each of which emits an electron by an electric field from the extraction electrode, are formed on the substrate.
Abstract:
Structures and methods to ease electron emission and limit outgassing so as to inhibit degradation to the electron beam of a field emitter device are described. In one method to ease such electron emission, a layer of low relative dielectric constant material is formed under the surface of the field emitter tip. Another method is to coat the field emitter tip with a low relative dielectric constant substance or compound to form a layer and then cover that layer with a thin layer of the material of the field emitter tip.
Abstract:
An FED and a method of manufacture are provided. The FED includes a cathode assembly containing an improved column line structure. The column line structure includes a conductive structure formed on a substrate. A resistive layer is formed on the conductive structure, and an insulator layer is formed partly over the resistive layer. The contact between the base of the emitter tips and the addressing column line is achieved through a lateral side that is not covered by the insulator layer. The insulator layer helps reduce the possibility of electrical shorting between the addressing column line and the row line structure of the cathode assembly. The insulator layer on top of the addressing column line will allow the use of a thinner subsequent dielectric layer. This thinner dielectric layer, which supports the grid, will provide a lower RC time constant and help achieve better video rate operation. The thinner dielectric layer also will result in smaller grid openings above the tips. This will provide for better beam spots, and, therefore, better image resolution. The thinner dielectric layer will require less applied voltage to extract electrons from the tips, resulting in lower power consumption for the FED.
Abstract:
A fibrous solid carbon manifold assembly and a method for producing the fibrous solid carbon manifold assembly are provided. The fibrous solid carbon manifold assembly has fibrous bodies carbonized, and a limitless number of superfine graphite filaments grown on surfaces of the carbonized fibrous bodies, in the inside of each of said fibrous bodies and in a gap between adjacent ones of said fibrous bodies. With such a configuration, the number of superfine graphite filaments can be increased more greatly.
Abstract:
Disclosed is an electron emission source composition for a flat panel display using the same, comprising carbon nanotubes, a vehicle, and an organotitanium or an organometallic compound, and a method of producing the electron emission source composition having improved adherent strength with the substrate and providing stable and uniform electron emitting characteristics.
Abstract:
It is an object to provide techniques for forming a field emission device of a field emission display device with the use of an inexpensive large-sized substrate according to the process that enables improving productivity.A field emission device according to the present invention includes a cathode electrode formed on an insulating surface of a substrate and a convex electron emission portion formed at a surface of the cathode electrode, and the cathode electrode and the electron emission portion include the same semiconductor film. The electron emission portion has a conical shape or a whiskers shape.
Abstract:
An object of the present invention is to provide a cold-cathode electron source successfully achieving a high frequency and a high output, a microwave tube using it, and a production method thereof. In a cold-cathode electron source according to the present invention, emitters have a tip portion tapered at an aspect ratio R of not less than 4, and thus the capacitance between the emitters and a gate electrode is decreased by a degree of declination from the gate electrode. For this reason, the cold-cathode electron source is able to support an operation at a high frequency. A cathode material of the cold-cathode electron source is none of the conventional cathode materials such as tungsten and silicon, but is a diamond with a high melting point and a high thermal conductivity. For this reason, the emitters are unlikely to melt even at a high current density of an electric current flowing in the emitters, and thus the cold-cathode electron source is able to support an operation at a high output.