Abstract:
The invention includes methods of treating sodalime glass surfaces for deposition of silicon nitride and methods of forming field emission display devices. In one aspect, the invention includes a method of treating a sodalime glass surface for deposition of silicon nitride comprising: a) cleaning a surface of the glass with detergent; and b) contacting the cleaned surface with a solution comprising a strong oxidant to remove non-silicon-dioxide materials from the surface and from a zone underlying and proximate the surface. In another aspect, the invention includes a method of treating a sodalime glass surface region for deposition of silicon nitride comprising: a) providing a sodalime glass surface region having a first concentration of an undesired chemical; b) contacting the sodalime glass surface region with a detergent solution; c) agitating the detergent solution across the sodalime glass surface region; d) removing the detergent solution from the surface region; e) after removing the detergent solution, contacting the sodalime glass surface region with a sulfuric acid solution; and f) removing the sulfuric acid solution from the sodalime glass surface region; wherein, after removing the sulfuric acid solution, the sodalime glass surface region comprises less than the first concentration of the undesired chemical.
Abstract:
An image display device comprising an electron source and a display member for displaying an image by irradiation with electrons emitted from the electron source is provided, which is characterized in that the electron source has a plurality of units provided with a higher voltage electrode disposed on a substrate, lower voltage electrodes provided in parallel on both sides of the higher voltage electrode across the higher voltage device electrode and electron-emitting areas located between each of the lower voltage electrodes and the higher voltage electrode, electron beams emitted from each of the electron-emitting areas in each unit cross with each other, and an equipotential surface to be formed between the substrate and the display member has an area protruding to the display member side on the higher voltage electrode.
Abstract:
The invention includes methods of treating sodalime glass surfaces for deposition of silicon nitride and methods of forming field emission display devices. In one aspect, the invention includes a method of treating a sodalime glass surface for deposition of silicon nitride comprising: a) cleaning a surface of the glass with detergent; and b) contacting the cleaned surface with a solution comprising a strong oxidant to remove non-silicon-dioxide materials from the surface and from a zone underlying and proximate the surface. In another aspect, the invention includes a method of treating a sodalime glass surface region for deposition of silicon nitride comprising: a) providing a sodalime glass surface region having a first concentration of an undesired chemical; b) contacting the sodalime glass surface region with a detergent solution; c) agitating the detergent solution across the sodalime glass surface region; d) removing the detergent solution from the surface region; e) after removing the detergent solution, contacting the sodalime glass surface region with a sulfuric acid solution; and f) removing the sulfuric acid solution from the sodalime glass surface region; wherein, after removing the sulfuric acid solution, the sodalime glass surface region comprises less than the first concentration of the undesired chemical.
Abstract:
The present invention enables a reduction in the number of electrical conductors which must be connected to each pixel in a field emission display. A first feature of the invention is that the functions of a conventional power supply ground conductor and a conventional "row enable" logic signal conductor are combined in a single "inverted row enable" logic signal conductor for each display row. A second feature is that the functions of a conventional "column enable" logic signal conductor and a conventional luminance signal conductor are combined in a "column luminance" signal conductor for each display column. The first feature is implemented by connecting the "inverted row enable" logic signal conductor as the source of emitter tip current for all the pixels in a display row. The second feature is implemented by gating (logically ANDing) a luminance signal by a "column enable" logic function to create a column luminance signal for each display column. The current flow through the emitter tips of each pixel, and hence the luminance of each pixel, is controlled by a transistor connected in series between the emitter tips of that pixel and the "row enable" signal conductor for the display row containing that pixel. The gate of the transistor connects to a conductor carrying the "column luminance" signal for the display column containing that pixel.
Abstract:
An apparatus and method for exposing a treatment site in a patient to x-ray radiation is described that uses a pulse voltage source, where the x-ray emitter employs a cold cathode. The invention may further include a current sensor for measuring a current through the x-ray emitter, and, optionally, a current integrator connected to the current sensor. Each voltage pulse may be discontinued when a predetermined amount of charge has passed through the emitter. The step of moving an x-ray emitter past a treatment area at a rate determined by the amount of charge that has passed through the emitter is also described. The present invention also includes an x-ray emitter device with rectangular voltage pulses added to a base direct current voltage. Another step of the invention may be applying a voltage pulse cycle to the x-ray emitter where a duration of the pulse is 2-5 times lower than a thermal relaxation time of an emitter.
Abstract:
An imaging apparatus for providing an image from a display to an observer, comprising: a display generating an optical output, an imaging surface member constructed and arranged for viewing by said observer, and a scanning mirror/lens assembly optically interposed between the display and the imaging surface member, and constructed and arranged to motively repetitively scan the display, generate a scanned image, and transmit the scanned image to the imaging surface member, for viewing of the scanned image. Various field emitter display designs and subassemblies are described, which may be usefully employed in such imaging apparatus.
Abstract:
A display device includes field emission cathode apparatus for emitting electrons. A plurality of electron beams are formed from the field emission cathode apparatus. A screen, which has a phosphor coating facing the cathode receives the plurality of electron beams. The phosphor coating includes a plurality of pixels each corresponding to a different one of said plurality of electron beams. A grid electrode is disposed between the cathode and the screen for controlling the flow of electrons from the cathode. The field emission cathode includes extractor grid means, having a plurality of separately addressable portions associated with each of said plurality of pixels. A gamma transfer function between input data value and beam current is provided in order to emulate a conventional CRT. This can be achieved by use of a lookup table.
Abstract:
A display apparatus capable of preventing deterioration in the light emission efficiency of a fluorescent member thereof, that of the emission performance of the emitter thereof and shortage of the life caused from the deterioration in the emission performance. The display apparatus according to the present invention has the structure such that each of insulating support rods for supporting an anode substrate and a cathode substrate in the container of the display apparatus has a glass fiber support rod body made of a non-alkali material and the surface of the support rod has a coating layer made of a hydrophobic material so as to prevent diffusion of alkali components and generation of oxygen from the insulating support rods.
Abstract:
A field emission display for reducing luminance unevenness by construction means. A plurality of stripe shaped cathode wirings 102 are formed in the cathode area 109 on a cathode substrate 101. Cut-through sections 108 are formed in each of the cathode wirings 102 and an island-like electrode 107 is formed within each cut-through section 108. A resistance layer 103 is formed on the cathode wiring 102, the cut-through section 108 and the island-like electrode 107. A plurality of emitter cones 106 are formed on the resistance layer 103 so as to provide a field emission array. The distance between the island-like electrode 107 and the cathode wiring 102 is changed depending on the position thereof in the cathode area 109 so as to correct deviation of the emission characteristic depending on the position. In the case of a full-color field emission display, white balance can be corrected by changing the distance depending on the luminous color of each dot.
Abstract:
A field emitter structure, comprising: a base substrate; a field emitter element on the base substrate; a multilayer differentially etched dielectric stack circumscribingly surrounding the field emitter element on the base substrate; and a gate electrode overlying the multilayer differentially etched dielectric stack, and in circumscribing spaced relationship to the field emitter element. Also disclosed are electron source devices, comprising an electron emitter element including a material selected from the group consisting of leaky dielectric materials, and leaky insulator materials, as well as electron source devices, comprising an electron emitter element including an insulator material doped with a tunneling electron emission enhancingly effective amount of a dopant species, and thin film triode devices.