Abstract:
In certain example embodiments of this invention, there is provided an ion source including an anode and a cathode. In certain example embodiments, a multi-piece outer cathode is provided. The multi-piece outer cathode allows precision adjustments to be made, thereby permitting adjustment of the magnetic gap between the inner and outer cathodes. This allows improved performance to be realized, and/or prolonged operating life of certain components. This may also permit multiple types of gap adjustment to be performed with different sized outer cathode end pieces. In certain example embodiments, cathode fabrication costs may also be reduced.
Abstract:
Provided is a semiconductor apparatus using an ion beam. The semiconductor apparatus may include a first grid to which a voltage applied. The voltage applied to the first grid may have the same potential level as that of a reference voltage applied to a wall portion of a plasma chamber in which plasma may be generated. The first grid may adjoin the plasma. Therefore, a potential level difference between the first grid and the wall portion of the plasma chamber may be zero, and thus the plasma may be stable.
Abstract:
A vapor delivery system for delivering a steady flow of sublimated vapor to a vacuum chamber comprises a vaporizer of solid material, a mechanical throttling valve, and a pressure gauge, followed by a vapor conduit to the vacuum chamber. The vapor flow rate is determined by both the temperature of the vaporizer and the setting of the conductance of the mechanical throttle valve located between the vaporizer and the vacuum chamber. The temperature of the vaporizer is determined by closed-loop control to a set-point temperature. The mechanical throttle valve is electrically controlled, e.g. the valve position is under closed-loop control to the output of the pressure gauge. In this way the vapor flow rate can be generally proportional to the pressure gauge output. All surfaces exposed to the vapor from the vaporizer to the vacuum chamber are heated to prevent condensation. A gate valve and a rotary butterfly valve are shown acting as the upstream throttling valve. Employing a fixed charge of solid material, the temperature of the vaporizer may be held steady for a prolonged period, during which the throttle valve is gradually opened from a lower conductance of its operating range as the charge sublimes. When a greater valve displacement is reached, the temperature is raised, to enable the valve to readjust to its lower conductance setting from which it can again gradually open as more of the charge is consumed.
Abstract:
The service lifetime of an ion source is enhanced or prolonged by the source having provisions for in-situ etch cleaning of the ion source and of an extraction electrode, using reactive halogen gases (F or Cl), and by having features that extend the service duration between cleanings. The latter include accurate vapor flow control, accurate focusing of the ion beam optics, and thermal control of the extraction electrode that prevents formation of deposits or prevents electrode destruction. An apparatus comprised of an ion source for generating dopant ions for semiconductor wafer processing is coupled to a remote plasma source which delivers F or Cl ions to the first ion source for the purpose of cleaning deposits in the first ion source and the extraction electrode. These methods and apparatus enable long equipment uptime when running condensable feed gases such as sublimated vapor sources, and are particularly applicable for use with so-called cold ion sources. Methods and apparatus are described which enable long equipment uptime when decaborane and octadecarborane are used as feed materials, as well as when vaporized elemental arsenic and phosphorus are used, and which serve to enhance beam stability during ion implantation.
Abstract:
An ion source section of ion implantation equipment for ionizing reaction gas in an ion implantation process of semiconductor manufacturing processes is disclosed. The ion source section includes a source aperture member separable from an arc chamber and having an ion-discharging hole through which the ion beam discharges. The source aperture member consists of a first plate, a second plate adjacent to the first plate and facing the arc chamber, and a third plate to protect the exposed second plate from the ionized reaction gas.
Abstract:
The present invention relates to an apparatus for focusing particle beams using a radiation pressure capable of obtaining the same flow amount and a narrower particle beam width with respect to the particle size and a higher numeral density. It is possible to form the particle beams by applying the radiation pressure to the particles with respect to the flow condition that cannot form the particle beams with respect to the set particle sizes. There is provided an apparatus for focusing particle beams using a radiation pressure, comprising an orifice part that is provided at a predetermined portion of the flow tube, and a lens having a hole with a predetermined diameter for thereby focusing the particle flow into a particle beam and applying a radiation pressure to the flow particles; and a light source supply part (A) provided at a portion opposite to the discharge outlet of the mixing tube.
Abstract:
In accordance with one specific embodiment of the present invention, the ion optics for use with an ion source have a plurality of electrically conductive grids that are mutually spaced apart and have mutually aligned respective pluralities of apertures through which ions may be accelerated and wherein each grid has an integral peripheral portion. A plurality of moment means are applied to a circumferentially distributed plurality of locations on the peripheral portion of each grid, which is initially flat, thereby establishing an annular segment of a cone as the approximate shape for that peripheral portion and a segment of a sphere as the approximate dished shape for the grid as a whole. The plurality of grids have conformal shapes in that the direction of deformation and the approximate spherical radii are the same. This elastic deformation during installation avoids any need for any permanent or inelastic deformation during fabrication, as well as controlling the excessive thermal displacements and accompanying performance changes to which flat grids are prone.
Abstract:
A charged particle apparatus, with multiple electrically conducting semispheric grid electrodes, the grid electrodes mounted in a dielectric mounting ring, with hidden areas or regions to maintain electrical isolation between the grid electrodes as sputter deposits form on the grid electrodes and mounting ring. The grid electrodes are mounted to the mounting ring with slots and fastening pins that allow sliding thermal expansion and contraction between the grid electrodes and mounting ring while substantially maintaining alignment of grid openings and spacing between the grid electrodes. Asymmetric fastening pins facilitate the sliding thermal expansion while restraining the grid electrodes. Electrical contactors supply and maintain electrical potentials of the grid electrodes with spring loaded sliding contacts, without substantially affecting the thermal characteristics of the grid electrodes.
Abstract:
A charged particle apparatus, with multiple electrically conducting semispheric grid electrodes, the grid electrodes mounted in a dielectric mounting ring, with hidden areas or regions to maintain electrical isolation between the grid electrodes as sputter deposits form on the grid electrodes and mounting ring. The grid electrodes are mounted to the mounting ring with slots and fastening pins that allow sliding thermal expansion and contraction between the grid electrodes and mounting ring while substantially maintaining alignment of grid openings and spacing between the grid electrodes. Asymmetric fastening pins facilitate the sliding thermal expansion while restraining the grid electrodes. Electrical contactors supply and maintain electrical potentials of the grid electrodes with spring loaded sliding contacts, without substantially affecting the thermal characteristics of the grid electrodes.
Abstract:
A multi-grid ion beam source has an extraction grid, an acceleration grid, a focus grid, and a shield grid to produce a highly collimated ion beam. A five grid ion beam source is also disclosed having two shield grids. The extraction grid has a high positive potential and covers a plasma chamber containing plasma. The acceleration grid has a non-positive potential. The focus grid is positioned between the acceleration grid and the shield grid. The combination of the extraction grid and the acceleration grid extracts ions from the plasma. The focus grid acts to change momentum of the ions exiting the acceleration grid, focusing the ions into a more collimated ion beam than previous approaches. In one embodiment, the focus grid has a large positive potential. In another embodiment, the focus grid has a large negative potential.