Abstract:
A high sensitivity desorption electrospray ionization mass spectrometry system that employs a heated platform, along with means for directing a liquid stream containing an analyte of interest onto a target location on the heated platform to heat the stream, an electrospray emitter for generating an electrospray and directing the electrospray at the target location on the heated platform to produce an ionized, desorbed analyte, and a mass spectrometer for receiving and detecting the ionized, desorbed analyte.
Abstract:
A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.
Abstract:
A sample introduction system provides mixing of a sample and a diluent within the container via gas injection. In one or more implementations, the sample introduction system causes a probe of an autosampler to be inserted into a container containing a sample and a diluent so that an end of the probe is submerged beneath a surface of the diluent and the sample. Gas is then injected through the probe to mix the sample and the diluent within the container. An aliquot of the mixed sample and diluent is then withdrawn through the probe.
Abstract:
An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.
Abstract:
An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.
Abstract:
Matrix for real-time aerosol mass spectrometry of atmospheric aerosols and real-time aerosol MALDI MS method Abstract The invention is directed to a matrix material for MALDI mass spectrometry, to a matrix composition for MALDI mass spectrometry, in particular for aerosol MALDI mass spectrometry, to a MALDI mass spectrometry method, in particular an aerosol MALDI mass spectrometry method, to the use of a specific compound as a MALDI matrix material, and to the use of a MALDI matrix composition in a gas phase coating method. The matrix material of the invention comprises a 2-mercapto-4,5-dialkylthiazole according to formula (I), wherein X is chosen from S, O or N, and wherein R1 and R2 are independently chosen from hydrogen, methyl, methoxy, ethoxy, and propoxy, or wherein R1 and R2 are taken together to form an optionally substituted aromatic ring structure, optionally comprising one or more heteroatoms, or a tautomeric form thereof. A matrix composition preferably includes the matrix material and an alcohol. The alcohol can be halogenated. The MALDI MS method comprises contacting the analyte with the matrix material or the matrix composition; ionising at least part of the analyte, and separating the ionised components using a mass spectrometer, e.g. TOF-MS. Preferably, bioaerosols are contacted with the matrix material in the gas phase.
Abstract:
A system for preventing backflow as part of an ion source arrangement is introduced. Such a system incorporates a novel continuous flow guide within a source, such as an API ion source. In the spray direction, the cross-sectional area that defines the first portion of the internal volume initially decreases in a convergent-like manner and thereafter increases in a divergent-like manner towards the exit opening of the source housing. Such a flow guide has been designed as an integral part of an ion source housing to provide for an optimal unidirectional flow past a sampling orifice of a mass spectrometer inlet. Accordingly, the novel design of the present invention prevents recirculation and thus minimizes carryover, chemical noise, and source turbulence and as an added benefit, enables a user to easily clean such a system during maintenance.
Abstract:
The invention comprises apparatus for use with atmospheric pressure ionization sources in which an aerosol is formed from a solution of a sample. The aerosol is received in a hollow member and discharged outside the chamber of the ionization source in order to reduce contamination of the ionization source itself by involatile material in the solution and by previously analysed samples. The hollow member is easily removable from the ionization source to facilitate cleaning and replacement. Ionization sources, mass spectrometers, and ion mobility spectrometers comprising the apparatus are also described.
Abstract:
Biological material is detected in a sample using a MALDI-MS technique (Matrix Assisted Laser Desorption and Ionization-Mass Spectroscopy). A liquid comprising the sample and a MALDI matrix material is prepared and used to form a continuous stream of the liquid. The stream is separated into successive parts to form drops, which are launched into flight, or the stream is launched into flight and then separated into drops. Drop forming techniques may be used that are known from ink jet printers. Material from the drops is ionized while in flight. Mass spectra from the ionized material of respective drops are measured. Preferably, before the drops are formed the liquid is diluted to a level where the majority of drops at most one micro-organism is present per drop.
Abstract:
A system for preventing backflow as part of an ion source arrangement is introduced. Such a system incorporates a novel continuous flow guide within a source, such as an API ion source. In the spray direction, the cross-sectional area that defines the first portion of the internal volume initially decreases in a convergent-like manner and thereafter increases in a divergent-like manner towards the exit opening of the source housing. Such a flow guide has been designed as an integral part of an ion source housing to provide for an optimal unidirectional flow past a sampling orifice of a mass spectrometer inlet. Accordingly, the novel design of the present invention prevents recirculation and thus minimizes carryover, chemical noise, and source turbulence and as an added benefit, enables a user to easily clean such a system during maintenance.