Abstract:
A discharge light comprising a light emitting tube (1) encapsulating a discharging medium, an inner electrode (2) disposed in the light emitting tube, and an outer electrode unit (4) fixed to the outside of the light emitting tube. The outer electrode unit comprises a plurality of outer electrodes (4b) arranged intermittently in the axial direction of the tube and having a part abutting on the outer wall face of the light emitting tube, and a part (4c) engaging with the light emitting tube while coupling the outer electrodes thereof integrally, wherein the engaging part clamps the light emitting tube at a part thereof thus holding the outer electrode unit around the light emitting tube. The light emitting tube is lighted by applying a voltage between the inner electrode and the outer electrode. The outer electrode can be fixed readily to the light emitting tube and the plurality of outer electrodes can be held against the light emitting tube with high accuracy.
Abstract:
A surface light source device includes a light source body having an inner space into which a discharge gas is injected, and an electrode for applying a voltage to the discharge gas. The light source body includes partition walls dividing the inner space into a plurality of discharge spaces. The partition walls have a width for suppressing formation of a parasite capacitance through which a current flows therein.
Abstract:
A flat lamp is provided. The provided flat lamp includes an electrode unit generating an electric field in a discharge area between a front plate and a rear plate to generate a gas discharge, and spacers arranged between the front plate and the rear plate while having first portions contacting the inner surface of the front plate or the rear plate and second portions contacting the inner surface of the other plate. The second portions of the spacers extend at least two directions centering around the first portions. A fluorescent material layer is formed on any portion in a discharge area, for example, on the inner surface of the front plate or the inner surface of the rear plate. In the provided flat lamp, visible rays are generated from portions where the spacers are formed. Thus, when the spacers do not absorb nor block ultraviolet rays, the spacers transfer the ultraviolet rays to the fluorescent layer formed on the inner surface of the front plate. In other case, fluorescent layers are formed on the inner surfaces of the spacers that contact the inner spaces of the spacers of generating separate discharges in order to generate visible rays. Accordingly, partial deterioration of luminance and unevenness of luminance are prevented.
Abstract:
A flat luminescent lamp and a method for manufacturing the same are disclosed in the present invention. More specifically, a flat luminescent lamp includes first and second substrates each having a plurality of grooves in sides which the first and second substrates face into each other, first and second electrodes in the grooves, first and second phosphor layers in the first and second substrates including the first and second electrodes, respectively, and a frame for sealing the first and second substrates.
Abstract:
A highly loaded fluorescent lamp (10) (FIG. 1) comprises a hollow, translucent glass body (12) containing a medium capable of generating at least several wavelengths of UV radiation. A plurality of phosphors is disposed on the inside surface of the glass body (12), the plurality of phosphors visible radiation upon exposure to the UV radiation. At least one of the plurality of phosphors is subject to degradation upon lone-term exposure to one of the at least one of several wavelengths of UV radiation. The at least one of the plurality of phosphors subject to degradation is installed (FIG. 12) adjacent the inside surface (14) of the glass body (12) to form a first layer (16); and the remainder of the plurality of phosphors is disposed on the first layer to form a second layer (18), the second layer not being subject to long-term degradation upon exposure to the UV radiation.
Abstract:
A flat-type fluorescent lamp device includes a first substrate, a plurality of first and second electrodes arranged on the first substrate at fixed intervals, a first fluorescent layer on an entire surface of the first substrate including the first and second electrodes, a second substrate having a plurality of projection portions for maintaining a uniform gap between the first and second substrates, and a second fluorescent layer on the second substrate except at regions, of the projection portions that contact the first substrate.
Abstract:
An aperture lamp includes a light transmissive envelope enclosing a discharge forming fill which emits light having both a visible light component and an infrared light component, a first reflector structure surrounding the envelope and defining a visible light transmissive aperture, and a second reflector structure surrounding the envelope and defining an infrared light transmissive aperture, wherein the area of the infrared light transmissive aperture is larger than the area of the visible light transmissive aperture.
Abstract:
What is described is a flat signal lamp with dielectrically impaired discharge, which is intended in particular for use in traffic signals, above all traffic lights.
Abstract:
A discharge lamp (1) including a tubular discharge vessel (2), filled with inert gas and, optionally, a fluorescent layer, having at least three elongated electrodes (3, 4, 5) arranged parallel to the longitudinal axis of the tubular discharge vessel (2). The electrodes are arranged in such a manner that the relationship s a ≥ 0.1 is satisfied, wherein s is the maximum spacing between an imaginary connecting line of an electrode pair and the most closely neighboring point on the wall of the tubular discharge vessel, and a is the mutual spacing between the electrodes of such electrode pair. A higher luminous density is achieved in this way. The lamp is particularly advantageous for a pulsed, dielectrically impeded discharge.
Abstract:
A description is given of a fluorescent lamp having spacers 6 for supporting a wall 2 of the discharge vessel, the fluorescent layer 3 having (8) a reduced thickness in a surrounding region of the spacer 6.