Abstract:
A highly reliable electrostatic-capacitive-type display device with a touch panel which allows a user to perform finger touch inputting and exhibits excellent detection sensitivity is provided. A transparent conductive film is formed above a back surface of an electrostatic-capacitive-type touch panel so as to block noises generated by a display device. A conductive member is provided to supply a voltage to a transparent conductive film formed above a back surface of the touch panel. An electrode which is formed on the electrostatic-capacitive-type touch panel is divided in accordance with a ratio between the number of X electrodes and the number of Y electrodes. A floating electrode is formed in a gap defined between the electrodes so as to adjust an area of the electrode. Due to the shrinkage of the area of the electrode, it is possible to lower a noise level to a level equal to or lower than a signal level. Accordingly, an S/N ratio is increased thus enhancing detection sensitivity. Further, lines are branched on a flexible printed circuit board and intersecting lines are formed on a back surface of the flexible printed circuit board, and the intersecting lines are made to orthogonally intersect with lines formed on a front surface of the flexible printed circuit board thus lowering line capacitance.
Abstract:
A twisted-pair cable and methods are disclosed. The twisted-pair cable comprises a first layer comprising a first non-conductive. A second layer is coupled to the first layer, and comprises a printed circuit patterned with first diagonal conductor segments. A third layer is coupled to the second layer, and comprises a non-conductive strip. A fourth layer is coupled to the third layer, and comprises a printed circuit patterned with second diagonal conductor segments. The first diagonal conductor segments and the second diagonal conductor segments are coupled at respective segment ends such that at least two wires are formed around the non-conductive strip. A fifth layer is coupled to the fourth layer, and comprises a second non-conductive.
Abstract:
A touch-sensitive device includes a transparent substrate, a touch-sensing structure, a decorative layer, a trace layer, a passivation layer and a sheltering layer. The touch-sensing structure is disposed on the transparent substrate and located in a touch-sensitive region. The decorative layer is disposed on the transparent substrate and located in a non-touch-sensitive region, and the trace layer is disposed on the decorative layer. The passivation layer is disposed on the transparent substrate and at least covers the touch-sensing structure and the trace layer. The sheltering layer is disposed at least on the passivation layer and located in the non-touch-sensitive region.
Abstract:
A wiring structure of a head suspension including a flexure that supports a head and is attached to a load beam applying load onto the head, comprises write wiring and read wiring formed on the flexure and connected to the head, each having wires of opposite polarities. The wiring structure further comprises a stacked interleaved part includes segments electrically connected to the respective wires of the write wiring, the segments stacked on and facing the wires through an electrical insulating layer so that the facing wire and segment have opposite polarities.
Abstract:
Disclosed are a conductive sheet, a usage method of the conductive sheet and a capacitive type touch panel. For a first conductive sheet (10A), two or more conductive first large grids (14A) are formed atop a first transparent base (12A), wherein each first large grid (14A) is constituted by combining two or more small grids (18), and the shapes of facing sides of each first large grid (14A) are formed to alternate. For example, rectangular waveshapes of a first side portion (28a) of the first large grid (14A) and of a fourth side portion (28d) facing the first side portion (28a) are made to alternate, and rectangular waveshapes of a second side portion (28b) of the first large grid (14A) and of a third side portion (28c) facing the second side portion (28b) are made to alternate.
Abstract:
Provided is a feed line structure that enables suppression of noise entering a primary power supply from an electronic circuit without using a circuit component such as a choke coil and a capacitor and also without increasing an occupied area on the circuit board, so that an EMI countermeasure is achieved. The feed line structure includes a feed line composed by pairing a power supply wire 41 and a reference potential wire 42 in an insulator 40, and is characterized in that a wire 43 in a floating state in potential is provided.
Abstract:
A circuit board with jumper structure is disclosed. The circuit board includes a substrate, a ground layer, a first signal transmission line, and a second signal transmission line. The ground layer is formed on a second plane of the substrate. The first signal transmission line is formed on a first plane of the substrate, and coupled to a first signal end and a second signal end. A first signal transmitted on the first signal transmission line in a combination method of a microstrip line to co-planar waveguide transition and a co-planar waveguide to microstrip line transition. The second signal transmission line is formed on the second plane of the substrate, and coupled to a third signal end and a fourth signal end. A second signal is transmitted on the second signal transmission line in the co-planar waveguide transmission.
Abstract:
There is provided a circuit board. The circuit board according to an aspect of the invention may include: an insulating base body; a plurality of circuit patterns including a first conductive pattern and a second conductive pattern facing the first conductive pattern at a predetermined interval therebetween; a printed resistor connecting the first conductive pattern and the second conductive pattern; and a heat radiation pattern provided on the insulating base body and overlapping at least partially overlapping the printed resistor.According to an aspect of the invention, a circuit board facilitating a design of a heating structure by forming a printed resistor on a circuit board and forming a heat radiation structure overlapping or connected to the printed resistor, and a method of manufacturing the same can be provided.
Abstract:
This invention discloses a display device mother substrate, a display device substrate and a manufacture method of display device substrate thereof. The display device mother substrate includes a first substrate, a second substrate, a first active area circuit and a first transmission line, wherein a first cutting line is defined between the first substrate and the second substrate. The first active area circuit is disposed on the first substrate and is electrically connected to the first transmission line. The first transmission line includes a display line portion, an end line portion and a middle line portion, wherein the display line portion is electrically connected to the first active area circuit. The middle line portion is disposed on the second substrate, wherein two ends of the middle line portion are electrically connected to the display line portion and the end line portion respectively at the first cutting line. The display device mother substrate is cut along the first cutting line to be separated into the first substrate and the second substrate, wherein the middle line portion is also separated from the display line portion and the end line portion.
Abstract:
An apparatus and method for crosstalk compensation in a jack of a modular communications connector includes a flexible printed circuit board connected to jack contacts and to connections to a network cable. The flexible printed circuit board includes conductive traces arranged as one or more couplings to provide crosstalk compensation.