Abstract:
The present invention provides a substrate for suspension that includes a first structural part including a metal supporting substrate, an insulating layer, a wiring layer, and a cover layer, and a second structural part formed so as to extend continuously from the first structural part and has no metal supporting substrate. A position of an edge of an upper surface of the insulating layer coincides with a position of an edge of the lower surface of the cover layer or the position of the edge of the upper surface of the insulating layer is positioned on a side closer to the wiring layer than to the position of the edge of the lower surface of the cover layer at a boundary region between the first structural part and the second structural part.
Abstract:
This disclosure relates generally to an electronic assembly and method having a first electrical connection point and a second electrical connection point and a differential interconnect coupling the first electrical connection point to the second electrical connection point, the differential interconnect including first and second transmission traces including a interior edges and a exterior edges opposite the interior edges, the second interior edge facing the first interior edge, and stub traces, each stub trace coupled to one of the first and second transmission traces and projecting from one of the first interior edge, the first exterior edge, the second interior edge, and the second exterior edge. A substantially equal number of stub traces project from the first exterior edge and the second exterior edge. At least twice as many stub traces project from the first and second exterior edges as project from the first and second interior edges.
Abstract:
Disclosed is a printed circuit board (PCB) having backdrill reliability anchors comprising nonfunctional pads to provide mechanical reinforcement for signal pads on backdrilled plated through hole (PTH) vias, as well as associated method and machine readable storage medium.
Abstract:
A first alignment mark is given to a substrate, and a second alignment mark is given to a mask. The mask forms an electronic circuit pattern on the substrate. A control unit performs alignment of the mask and the substrate based on the first and second alignment marks. The second alignment mark is formed to surround the first alignment mark. The second alignment mark has a step pattern therein.
Abstract:
A multilayer substrate comprises: a stack having a plurality of insulating base materials; a first component arranged within the stack at a first level in a thickness direction of the stack; a second component arranged within the stack at a second level different from the first level and arranged so that, in a plan view, at least a portion of the second component overlaps with a portion of the first component; and a supplementary member arranged to at least partly exist in a range, in a thickness direction, as high as or higher than a lower end of the second component and as high as or lower than an upper end of the second component, and in a plan view, within a region of a projected area of the first component not overlapped with the second component, the supplementary member having a rigidness higher than the insulating base materials.
Abstract:
A method includes patterning a layer over a substrate with a first metal pattern; using a cut mask in a first position relative to the substrate to perform a first cut patterning for removing material from a first region within the first pattern; and using the same cut mask to perform a second cut patterning while in a second position relative to the same layer over the substrate, for removing material from a second region in a second metal pattern of the same layer over the substrate.
Abstract:
A tunable filter design. The filter is implemented using transmission line sections as inductive and capacitive components. At least one capacitive component is a tunable capacitor. In some implementations, the tunable capacitor may be an interdigitated array of finger elements arranged so that the spacing between fingers may be adjusted. The design has a number of advantages including high capacitance for a given circuit area, small area for a given desired capacitance, mechanical stability, high self resonance frequency, and high quality factor.
Abstract:
A structure includes a substrate having a plurality of balls, a semiconductor chip, and an interposer electrically connecting the substrate and the semiconductor chip. The interposer includes a first side, a second side opposite the first side, at least one first exclusion zone extending through the interposer above each ball of the plurality of balls, at least one active through via extending from the first side of the interposer to the second side of the interposer, wherein the at least one active through via is formed outside the at least one first exclusion zone and wherein no active through vias are formed within the at least one first exclusion zone, and at least one dummy through via extending from the first side of the interposer to the second side of the interposer, wherein the at least one dummy through via is formed within the at least one first exclusion zone.
Abstract:
A light emitting device includes a first substrate including a flexible first base member and a first wiring pattern provided on the first base member; a second substrate including a second base member and a second wiring pattern provided on the second base member; and a plurality of light emitting elements mounted on the first wiring pattern. The first substrate includes: a joining end portion that is located at a first, joining end of the first substrate, and that overlaps a portion of the second substrate, and a second end, other than the joining end, that does not overlap the second substrate. The first wiring pattern and the second wiring pattern do not face each other. An electrically conductive joining member is disposed across the first wiring pattern and the second wiring pattern, while partially covering the joining end portion of the first substrate.
Abstract:
A printed circuit board (PCB) is provided comprising a plurality of non-conductive layers with conductive or signal layers in between. The PCB includes a first conductive via traversing the plurality of non-conductive and conductive or signal layers as well as a second conductive via traversing the plurality of non-conductive layers and conductive or signal layers, the second conductive via located substantially parallel to the first conductive via. An embedded electro-optical passive element is also provided that extends perpendicular to and between the first conductive via and the second conductive via. The electro-optical passive element embedded is located within a selected layer at a first depth in the printed circuit board, wherein such first depth is selected to reflect an incident electromagnetic wave back into the printed circuit board to enhance or diminish an electrical signal in the first conductive via by creating a positive or negative electromagnetic interference.