Abstract:
A system and method for generating water concentrated in calcium bromide from produced water, to provide for drilling fluid having the calcium bromide. The technique includes flowing the produced water through a bed of ion-exchange resin to sorb bromide ions from the produced water onto the ion-exchange resin, and then regenerating the ion-exchange resin to desorb the bromide ions for combination with calcium ions to acquire an aqueous solution with calcium and bromide.
Abstract:
A thermal management system includes a sublimator that has a porous plate, a water feed line connected with the sublimator for delivering feed water to the porous plate, and an adsorbent bed in the water feed line. The sublimator is operable to freeze and sublime the feed water using the porous plate. The adsorbent bed is configured to substantially remove organic compounds from the feed water.
Abstract:
An ion exchanger includes a case and an ion exchange resin. The case includes an inflow hole into which a refrigerant flows and an outflow hole out of which the refrigerant flows. The ion exchange resin is arranged in the case to remove ions from the refrigerant. The inflow hole and the outflow hole are located at a lower end of the case. The case accommodates a tube extending in a vertical direction and connecting to the outflow hole. The ion exchange resin is located between an inner wall of the case and an outer wall of the tube. The inflow hole is formed so that the refrigerant flows through the inflow hole into the case and evenly into the ion exchange resin from a lower end surface of the ion exchange resin.
Abstract:
Disclosed is an internal circulation resin ion exchange adsorption reactor with a mechanical stirrer. The upper part ⅔˜⅘ of the reactor main body is an open cylinder and the lower part ⅕˜⅓ is a cone-shaped body with a slope of 30°±10°. A bell-jar shaped reaction slot with a turbine water stirrer inside is located in the center of the reactor main body. The reactor main body is equipped with a cylindrical guide plate. A water collection weir, an inclined tube separator and an annular resin collection hopper are located between the shell of the reactor main body and the guide plate. The reactor is equipped with a water inlet pipe and a water outlet pipe. A resin removal pipe is connected with the annular resin collection hopper and a resin desorption slot respectively, and a regenerated resin reflux pipe is connected to the bell-jar shaped reaction slot.
Abstract:
Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.
Abstract:
The present invention provides a system and a process for removing contaminants such as CO.sub.2 and mobile cations and anions from aqueous solutions. The system and the process contemplate the use of thermally sterilizable aqueous polishing agents such as thermally sterilizable ion exchange resins and as a result, the need for chemical and/or mechanical microbial control or inhibition techniques is obviated. Therefore, the present invention will be especially useful in submarine and spacecraft applications where the need exists for reduced weight and volume water processing systems.
Abstract:
A method for the removal of pollutant ions from an aqueous solution in which they are contained, which method includes the steps of:i) contacting the solution to be treated with particles of a composite magnetic resin which includes magnetic particles embedded in an organic polymeric matrix which either contains, or has attached thereto sites which are selective for the pollutant ions in the presence of other ions it is not desired to remove;ii) separating by magnetic filtration the composite magnetic resin particles from the solution;iii) subjecting the separated composite magnetic resin particles to regeneration using an appropriate regenerant solution;iv) separating the regenerated composite magnetic resin particles from the regenerant solution; andv) recycling the separated composite magnetic resin particles to step (i) of the method.