Abstract:
Phosphor and a plasma display device are provided whose deterioration in brightness of phosphors and a degree of change in chromaticity are alleviated and whose discharge characteristics are improved and that has excellent initial characteristics. Phosphor of the present invention is an alkaline-earth metal aluminate phosphor containing an element M (where M denotes at least one type of element selected from the group consisting of Nb, Ta, W and B). In this phosphor, a concentration of M in the vicinity of a surface of the phosphor particles is higher than the average concentration of M in the phosphor particles as a whole. A plasma display device according to the present invention includes a plasma display panel in which a plurality of discharge cells in one color or in a plurality of colors are arranged and phosphor layers are arranged so as to correspond to the discharge cells in colors and in which light is emitted by exciting the phosphor layers with ultraviolet rays. The phosphor layers include blue phosphor, where the afore-mentioned phosphor is used as the blue phosphor.
Abstract:
A noble gas discharge lamp of the present invention comprises an outer enclosure comprising a light emitting layer comprising at least one fluorescent substance, the light emitting layer formed therein and a pair of outer electrodes having tape shapes comprise a metal, which are adhered to the entire length of the outside of the outer enclosure so as to separate one outer electrode and the other outer electrode at a certain distance, and to form a first opening portion and a second opening portion; wherein the coated amount of fluorescent substance is in a range of 5 to 30 mg/cm.sup.2.
Abstract translation:本发明的惰性气体放电灯包括外壳,其包括包含至少一种荧光物质的发光层,形成在其中的发光层和具有带状的一对外电极包括金属,其粘附到整个 从而将一个外电极和另一个外电极分开一定距离,并形成第一开口部分和第二开口部分; 荧光物质的涂布量在5〜30mg / cm 2的范围内。
Abstract:
A noble gas discharge lamp of the present invention comprises an outer enclosure comprising a light emitting layer formed therein, and a pair of outer electrodes having tape shapes comprise a metal, which are adhered to the entire length of the outside of the outer enclosure so as to separate one outer electrode and the other outer electrode at a certain distance, and to form a first opening portion and a second opening portion; wherein the thickness of the outer enclosure is in a range of 0.2 to 0.7 mm, and at least one nonlinear portion is formed at at least one the side portion of the outer electrodes.
Abstract:
Rib structures for containing plasma in electronic displays are formed by redrawing glass preform into fiber-like rib components. The rib components are then assembled to form rib/channel structures suitable for use in flat panel displays, such as plasma emissive displays, field emissive displays and plasma addressed liquid crystal displays.
Abstract:
The invention relates to a fluorescent lamp of the external electrode type and an irradiation unit using this fluorescent lamp. In a fluorescent lamp of the external electrode type, a glass tube with fluorescent material applied to its inside is hermetically filled with a suitable amount of rare gas, in the axial direction of the outside surface of the glass tube there is at least one pair of electrodes, and on the side which is opposite the aperture for emission of the light to the outside there is reflector material. The electrodes are at least partially translucent, and the reflector material is located in these translucent regions. In this way the electrostatic capacity of the lamp is not significantly reduced even if the electrodes are partially provided with translucent regions. The energy input into the lamp thus has a value which would be obtained essentially even if the translucent regions were absent. Therefore the light intensity can be increased according to the arrangement of the reflector material. The translucent regions can have any shapes, as in the form of slits, openings or the like. Furthermore, in a fluorescent lamp of the external electrode type the external electrodes exhibit light transmission. When the lamp is being operated the light is emitted to the outside from the aperture, and at the same time the light is emitted from the translucent regions which are located in the external electrodes. The light emitted from the translucent regions is reflected from a reflector device and is radiated from the opening of this U-shaped reflector device. Light intensity can be increased by the measure that the external electrodes of the lamp are partially translucent and that the light passed by the translucent regions is reflected by this reflector device and is radiated onto a region to be irradiated.
Abstract:
The present invention is directed to a discharge tube for use with a display device which is simple in structure and which can be mass-produced satisfactorily. Further, the discharge tube for display device of the present invention can be increased in resolution and can be made large in size with ease. Furthermore, the discharge tube for use with a display device of the present invention can be made inexpensive with ease. A pair of memory elements (Ma), (Mb) having memory electrodes (3a), (3b) formed of conductive layers having a plurality of apertures (5a), (5b) arranged in an XY matrix form and in which the whole surface of the memory electrodes (3a), (3b) are covered with insulating layers (4a), (4b) are laminated such that corresponding apertures (5a), (5b) covered with the insulating layers (4a), (4b) are communicated with each other to thereby form discharge cells. all of which are sealed into a tube body in which a discharging gas is sealed. Then, an AC voltage necessary for maintaining a discharge is applied between the memory electrodes (3a), (3b) of the pair of memory elements (Ma), (Mb).
Abstract:
A gas-filled display panel comprising a glass base plate and a glass face plate hermetically sealed together along a perimeter seal area to form an envelope which is filled with an ionizable gas, the base plate having an array of longitudinal slots in which anode wires are seated and having an array of cathode electrodes on the top surface thereof. The base plate has cross grooves transverse to the slots and positioned one near each end of the base plate, and a glass rod is secured in each cross groove with the ends of each rod lying within the seal area between the base plate and the face plate, the top surface of each insulating member being generally coplanar with the top surface of the base plate in the seal area, to insure the formation of a hermetic seal between the base plate and face plate at the cross grooves.
Abstract:
A method of making a display panel comprising the steps of providing a glass base plate with an array of slots and securing an anode electrode in each slot; forming parallel depressions in one surface of a thin sheet of metal, and then securing it to the top surface of the base plate, with the unetched surface up and the depressions down, and then removing the material of the unetched surface of the metal sheet down to the depressions to form separate strips of metal as cathodes, on the top surface of the base plate; and finally assembling the other electrodes and parts of the panel with the base plate carrying the anode and cathode electrodes.
Abstract:
In a multilayer gas-discharge display panel of the type including a plurality of character blocks, each including a plasma supply reservoir section, a control anode section, and a display section, such sections being arranged in a plurality of parallel, gas-filled columns defining a display matrix, the supply reservoir providing a source of ions which are selectively conducted by the control anodes to the display section, a voltage being applied to the display section to initiate a gas breakdown in those columns which have had ions conducted therethrough by the control anodes, an improved display section is disclosed comprising a transparent, insulating plate extending across the front of the panel, perpendicular to and covering all of the columns, a transparent electrode covering the front surface of the plate, on the opposite side of the plate from the supply reservoir and the control anodes, and means for applying voltage pulses of alternating polarity to the electrodes to create a flashing discharge in each selected column, the intensity and power dissipated by the display being a function of the frequency and amplitude of the voltage pulses.
Abstract:
A helium resonance lamp having a hollow cylindrical body including dielectric walls has a reentrant coaxial hollow element integral within said body and extending from one end thereof with an electrical conductor within said hollow element. A window partially transparent to 584A encloses the other end of said body. A hollow arm is integral with and extends from the body and contains a getter. High purity helium is maintained within the body at a pressure of 0.1 to 100 torr. The lamp is placed within a chamber connected to a vacuum system to be tested. Helium gas is sprayed near the suspected leak in the system. Helium entering the chamber from the system is detected and displayed.