Abstract:
A vacuum channel field effect transistor includes a first insulator on a p-type semiconductor substrate, a gate electrode on the first insulator, a second insulator on the gate electrode, a drain electrode on the second insulator, and an n+ impurity diffusion layer in the surface of the p-type semiconductor substrate, the n+ impurity diffusion layer being in contact with a side wall including side faces of the first insulator, the gate electrode, and the second insulator. Application of predetermined voltages to the n+ impurity diffusion layer, the gate electrode, and the drain electrode causes charge carriers in the n+ impurity diffusion layer to travel through a vacuum or air faced by the side wall to the drain electrode, which can increase the source-drain current.
Abstract:
A vacuum integrated electronic device has an anode region of conductive material; an insulating region on top of the anode region; a cavity extending through the insulating region and having a sidewall; and a cathode region. The cathode region has a tip portion extending peripherally within the cavity, adjacent to the sidewall of the cavity. The cathode region is formed by tilted deposition, carried out at an angle of 30-60° with respect to a perpendicular to the surface of device.
Abstract:
An electron emitting element includes a substrate, an electrically conductive layer located on the substrate and formed with a protrusion or a recess, and an electron emitting layer formed over the protrusion or the recess on the conductive layer and having a plurality of linear conductors, a height of the protrusion or a depth of the recess being greater than a thickness of the electron emitting layer.
Abstract:
An illuminating device includes: an upper substrate and a lower substrate facing each other and spaced apart from each other; an anode electrode arranged on a lower surface of the upper substrate; a phosphor layer arranged on a lower surface of the anode electrode; a cathode electrode arranged on an upper surface of the lower substrate; an electron emission source arranged on the cathode electrode; and a reflection film arranged between the electron emission source and the phosphor layer and respectively separated therefrom, the reflection film being patterned on a surface facing the phosphor layer to diffuse light emitted from the phosphor layer. The illuminating device provides improved brightness uniformity by forming a pattern on the reflection film so that light can be uniformly diffused or dispersed.
Abstract:
An electron emission display includes: a rear plate including an electron emission device; a front plate spaced from the rear plate and including a fluorescent layer adapted to emit light in response to electrons emitted by the electron emission device colliding with the fluorescent layer; and a grid electrode arranged in a space between the rear and front plates and having a grid substrate including an aperture through which electrons emitted by the electron emission device pass and a film of a photo absorbing material arranged on a surface of the grid substrate. With this configuration, light from a fluorescent layer or secondary electrons, which travel towards a rear plate while the electron emission display operates, are absorbed in the blackened film to prevent other fluorescent layers from emitting light, thereby improving brightness and color purity of the electron emission display.
Abstract:
An electron gun comprises a photoemissive source, which is excited by a source of light such as a pulsed laser. This electron emission is amplified by a secondary emission multiplication system comprising a plurality of AC or DC biased dynodes. In the former case the gun envelope forms a resonator cavity.