Abstract:
An ion detection system is disclosed that comprises one or more first devices 11 configured to produce secondary electrons in response to incident ions. The one or more first devices 11 comprise a first ion collection region and a second ion collection region and are configured to produce first secondary electrons in response to one or more ions incident at the first ion collection region and to produce second secondary electrons in response to one or more ions incident at the second ion collection region. The ion detection system also comprises a first output device 14 configured to output a first signal in response to first secondary electrons produced by the one or more first devices 11 and a second output device 15 configured to output a second signal in response to second secondary electrons produced by the one or more first devices 11.
Abstract:
An ion detection system is disclosed that comprises one or more first devices 11 configured to produce secondary electrons in response to incident ions. The one or more first devices 11 comprise a first ion collection region and a second ion collection region and are configured to produce first secondary electrons in response to one or more ions incident at the first ion collection region and to produce second secondary electrons in response to one or more ions incident at the second ion collection region. The ion detection system also comprises a first output device 14 configured to output a first signal in response to first secondary electrons produced by the one or more first devices 11 and a second output device 15 configured to output a second signal in response to second secondary electrons produced by the one or more first devices 11.
Abstract:
The invention relates to a semi-transparent photocathode (1) for a photon detector having an increased absorption rate for a preserved transport rate. According to the invention, the photocathode (1) includes a transmission diffraction grating (30) able to diffract said photons and provided in the support layer (10) on which the photoemissive layer (20) is deposited.
Abstract:
Via the shape of the photocathode surface and the geometry and potential distribution of electrodes of the electron-optical system, an X-ray image intensifier tube is optimized for reduction of the transit time variance for photoelectrons from the photocathode surface to a photoelectron detector. The photoelectron detector, on which an image need not be formed in this case, has, for example, a comparatively small entrance surface and is arranged in or near a cross-over of the photoelectrons.
Abstract:
A photomultiplier tube comprises an evacuated envelope having a photoemissive cathode, a shield cup spaced from the cathode and an electron multiplier cage assembly abutting the shield cup. The cage assembly includes a pair of transversely spaced insulating support plates having oppositely disposed surfaces. A plurality of dynodes and an anode are disposed between the support plates. A plurality of oppositely disposed locating slots are formed in the shield cup. At least one tab slot is formed through the oppositely disposed surfaces of each of the support plates. A plurality of connecting tab members are provided for connecting the cage assembly to the shield cup. Each tab member includes a slot engaging portion, a locking portion, a locating portion and an attachment portion. The slot engaging portion is disposed within the tab slot of the support plate. The locking portion extends from one end of the slot engaging portion for securely engaging one surface of the plate. A locating portion extends from the other end of the slot engaging portion along the other oppositely disposed surface of the plate and through one of the locating slots formed in the shield cup. The attachment portion of the tab member is fixedly attached to the shield cup.
Abstract:
A photoelectric tube, preferably a photomultiplier tube comprises a photoemissive cathode deposited on the inner faceplate of the tube envelope and a dynode assembly mounted within the envelope. The tube includes a generator containing an alkali metal source for deposition of alkali metal onto the cathode surface. The generator has means for directing the alkali metal vapors substantially toward the cathode surface and for preventing the alkali metal vapors from substantially depositing on the dynode assembly.
Abstract:
The ion-electron converter is primarily intended for the measurement of small positive ion currents. The essential feature of the converter is its curved conversion electrode which generates an electrostatic field with favorable ion-optical properties; in addition, it avoids high field strength at the conversion electrode, thus reducing spurious field electron emission. Both properties result in an ion detector of high efficiency and sensitivity for positive ions.
Abstract:
A cathodoluminescent image display device utilizes a cold cathode as the source of electrons. The cold cathode comprises a photocathode, an electron multiplier and a fluorescent anode. The structure of the cathode is such that a portion of the light given off by the fluorescent anode is free to feedback and impinge upon the photocathode. The cold cathode disclosed herein is thus a closed loop device having a loop gain G. The electron multiplier has a gain G.sub.m such that the loop gain G of the device is maintained at a value greater than or equal to one thus causing a sustained electron discharge.
Abstract:
An electronic sampling head comprising a housing having a path for impinging radiation, a photoemissive element positioned across said path, photoelectron ejection means positioned in proximity to said photoemissive element, means for applying ultrashort sampling potential differences between said photoemissive element and said photoelectron ejection means for accelerating photoelectrons emitted by said photoemissive element in response to said incident radiation, and means for detecting said photoelectrons all resulting in the capability of detecting high-speed radiation phenomena with waveform fidelity.
Abstract:
A secondary emissive electrode for image intensifiers, cathoderay tubes and the like which comprises a plate of insulating material having two substantially parallel boundary surfaces on opposite sides thereof pierced by channels, the walls of which are secondary emissive, forming a high-density network of channels between two surfaces. The periphery of this plate has at least two regions one opposite the other relative to the center of the body with channels which are filled with a core material. In the manufacture of such an electrode, all channels are initially filled with a material which can be etched away by an acid. Those channels in the regions of the periphery are covered with a coating which is etch resistant, and the core material in the remaining channels etched away after which the coating is removed.